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ABSTRACT: A solution to Maxwell’s equations in the three-dimensional frequency
domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra
of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from
the spatial propagation of pulses through the sample are simulated in 2DFT spectra
calculated for the homogeneous Bloch line shape model. Spectral features that appear at
optical densities of up to 3 are investigated. As optical density increases, absorptive and
dispersive distortions start with peak shape broadening, progress to peak splitting, and
ultimately result in a previously unexplored coherent transient twisting of the split peaks.
In contrast to the low optical density limit, where the 2D peak shape for the Bloch model
depends only on the total dephasing time, these distortions of the 2D peak shape at finite
optical density vary with the waiting time and the excited state lifetime through coherent
transient effects. Experiment-specific conditions are explored, demonstrating the effects of
varying beam overlap within the sample and of pseudo-time domain filtering. For beam
overlap starting at the sample entrance, decreasing the length of beam overlap reduces the
line width along the ωτ axis but also reduces signal intensity. A pseudo−time domain filter, where signal prior to the center of the
last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is
demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation−detection transformation that can eliminate
propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium
vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279−6287] is quantitatively compared, in line width, in depth of peak
splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.

■ INTRODUCTION

Optical two-dimensional Fourier-transform (2DFT) spectros-
copy1−6 is a powerful technique for studying electronic
coupling across a wide range of systems, from atomic vapors
to biological pigment complexes. The extra dimension in 2DFT
spectroscopy separates homogeneous from inhomogeneous
line shape broadening and highlights coupling between
electronic transitions. However, in order to take advantage of
this additional information, one must avoid or account for
distortions of the signal caused by the absorptive and dispersive
nature of the sample.7−14 Avoidance relegates experimental
work to sample optical densities (OD) less than 0.1 where such
distortions are typically below 10%,13 allowing 2DFT spectra to
be modeled at the 10% level by ignoring spatial pulse
propagation effects at the cost of reduced signal size. In
contrast, nonlinear optical signals are typically maximized at
optical densities near 0.7,7 where propagation effects are
significant and must be accounted for.8−16 For linear optics,
neglect of propagation distortions corresponds to a restriction
that the exponential in Beer’s law can be described by a Taylor
series expansion that is truncated after the zeroth and first order
terms. Because the signal-to-noise ratio of linear absorption
spectra is typically optimized at optical densities between 0.3
and 0.717,18 where the first-order Taylor series is a poor

approximation to the exponential, transmittance spectra are
almost always converted to an extinction coefficient using the
Beer−Lambert law19 before modeling. The optical density or
absorbance A = −log10[I/I0] = ϵCL properly accounts for the
exponential attenuation of light as it propagates, connecting the
macroscopic measurement of the intensity of transmitted light
to the microscopic molar decadic extinction coefficient (ϵ), the
number density or concentration (C) of chromophores, and the
path length (L). The corresponding conversion of 2DFT
spectra is not generally so simple, but becomes straightforward
in circumstances where 2DFT spectra simplify to changes in
transmittance.3 This paper is about calculating the 2DFT
spectra of macroscopic samples even when there is no known
procedure for converting the 2DFT spectra to a microscopic
nonlinear response. These calculated 2DFT spectra for
macroscopic samples are a nonlinear analogue of linear
transmittance spectra and can be directly compared to
experimental 2DFT spectra. Aside from the benefits of
maximizing accuracy and signal strength by treating prop-
agation distortions, it is not always possible or practical to
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control the sample optical density (for example in weakly
nonlinear or highly concentrated samples) and the exper-
imental separation of local field and interaction effects (which
modify both the linear and nonlinear responses)7,13,20−26 from
propagation effects (in which the underlying linear and
nonlinear responses do not change)7−14 might be accomplished
in gases and solutions by independently varying concentration
and optical density.13 Yetzbacher et al. discussed how
propagation and detection distortions are influenced by beam
crossing angle, beam spot size, signal bandwidth, sample
thickness, and sample optical density.13 Specifically, the
treatment of propagation distortions and their dependence on
optical density and beam overlap is the focus of this work.
Ideally, 2DFT spectroscopy is a measurement of the

microscopic nonlinear response of a material.2−4 From this
standpoint, propagation effects are “distortions” of the radiated
signal field that change the relationship between the true
microscopic nonlinear response and the measured signal field.
2DFT spectra generated by four-wave mixing processes depend
on three time intervals, resulting in propagation distortions that
are inherently three-dimensional in time or, equivalently, three-
dimensional in frequency. Thus, propagation distortions must
generally be modeled three-dimensionally, either in the 3D
time domain or in the 3D frequency domain.11,12

For sufficiently weak excitation fields, propagation distortions
in nonlinear optics result from linear reshaping of the excitation
pulses and emitted signal field as they propagate through an
optically thick medium.3,11,12,15 For weak, resonant pulses
shorter than the polarization decay time of a low optical density
medium, each input field propagates almost without distortion,
but is trailed by a reradiated field that is π out of phase with the
input field and decays with the polarization decay time (the
trailing linear free-induction decay or FID).27,28 As the optical
density increases, multiple absorption−reradiation cycles
increasingly distort the input field and FID. In some work,
this effect on the signal has been termed cascaded free-
induction decay four-wave mixing29 because it arises from linear
cascading of the input fields; such cascading is fully included in
the treatment of propagation distortions here. At optical
densities greater than 0.5, these linear propagation distortions
are prominent in 2DFT spectra and can even dominate the
overall appearance of the line shape. While it can be
advantageous to increase the signal strength by increasing the
optical density of the sample, this strategy also strengthens
propagation distortions. By including propagation distortions in
modeling 2DFT spectra, even highly distorted experimental
spectra could be modeled to extract the fundamental dynamics.
This ability, which is the nonlinear analogue of converting
calculated linear extinction coefficients to calculated linear
transmittance spectra, would enable the interpretation of 2DFT
spectra measured at the optical density where signal is
strongest, expanding the range of samples available to 2DFT
spectroscopy.
Numerical solutions of the electromagnetic wave equation in

one spatial dimension have been used to model spatial
propagation, both for intense single pulses30,31 and for
nonlinear signals generated by multiple collinear pulses.7,9,10,32

Olson et al.7 used such calculations to distinguish optical
density effects from chromophore interaction effects. Prop-
agation of individual pulses has also been studied using
nonlinear finite difference time domain (NL-FDTD) ap-
proaches to the solution of Maxwell’s equations in three spatial
dimensions,33,34 which treat the boundary conditions as well as

intense pulse interactions such as self-focusing. The generality
of NL-FDTD methods comes at the computational cost of
propagating pulses as an explicit function of both the
propagation and transverse dimensions, requiring a 3D spatial
grid with subwavelength steps (λ/100 to λ/10) in addition to a
time grid.33 Pseudospectral time domain methods can increase
the maximum allowable spatial step size to as large as λ/2,35

reducing the number of spatial grid points necessary for a given
propagation length.
The 3DFT method12 used here to generate and spatially

propagate the third-order nonlinear signal is based on an exact,
three-dimensional solution of Maxwell’s equations and is valid
for noncollinear pulses in the weak field limit. This algorithm
calculates the complex-valued 3D frequency domain spectrum,
S3̂D, from which 2DFT spectra at a range of waiting times can
be extracted. It successfully reproduces optical density effects
on the integrated two-pulse photon echo signal decay rate11

and beam geometry distortions of relative cross-peak
amplitudes in 2DFT infrared spectra.14 2DFT spectra
calculated using the 3DFT method at waiting times long
compared to dipole dephasing dynamics connect to expressions
for absolute pump−probe signal size15,16 and to experimentally
tested expressions for product 2D peak shapes.3

The 3DFT algorithm uses the nonlinear impulse re-
sponse36,37 (the time-dependent nonlinear polarization excited
by three weak, delta-function pulses) as an essential input for
the calculation of the signal field radiated by a macroscopic
sample. For complicated systems, quantum mechanical time
domain propagation of a model system or ensemble of model
systems is needed to calculate this response.38−41 Several
approaches to efficiently calculate the response for a single time
delay triple have been developed42,43 and could be incorporated
into the algorithm used here. An advantage of the 3DFT
algorithm is that the third-order nonlinear response is only
calculated once for each point on a 3D grid11 and does not
need to be evaluated at delay-dependent time intervals as in
convolution algorithms used to incorporate pulse duration
effects.44−46 While calculating the third-order nonlinear polar-
ization in the time domain usually involves a 3D convolution of
the third-order nonlinear susceptibility with the three excitation
pulses [requiring O(N2) operations where N is the total
number of points in the 3D grid], this can be accomplished in
the frequency domain by simple multiplication following a 3D
fast Fourier transform (FFT) of the third-order nonlinear
susceptibility [O(N log2N)].

47 Alternative methods48−50 that
include interaction with the pulse fields in repetitive (e.g., phase
cycled) calculations of the quantum dynamics have also been
used to calculate the nonlinear polarization for finite pulses and
generate a computational savings over time domain con-
volution. These methods optimize the calculation of the
polarization for a single time delay triple at one point inside the
sample. In contrast, the 3DFT approach is optimized for
simultaneous calculation of the entire 3D spectrum, which
includes the complete set of 2D spectra (multiplex advantage).
Further, propagation distortions can be applied to the 3D signal
by a single multiplication in the 3D frequency domain, as
opposed to the stepwise pulse propagation and recalculation of
the nonlinear polarization for the distorted pulses at each depth
within the sample used in the time domain methods.7,9,10,33−35

Altogether, this results in reduced computation time. The
disadvantage is that 3D FFT algorithms typically require more
random access memory (RAM) than a 3D convolution, but 3D
FFT grids of 10243 points that can match available
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experimental resolution are now possible on personal
computers. For grids of even larger size which do not fit in
RAM, slower methods allow the 3D Fourier transform to be
evaluated in sections.47

There are four essential assumptions implicit in the 3D
Fourier transform (3DFT) theory and calculations presented
here. First, the signal is assumed to be generated by the
perturbative third-order nonlinear response of the sample (and
it is further assumed that this response is independent of the
excitation pulse wave vectors; this excludes signal decay via
motion of excited atoms51 or excitation diffusion,52 which are
slow on femtosecond time scales). Second, it is assumed that
the excitation pulses and the radiated signal field all propagate
through the sample according to linear optics. [This can be
checked for the excitation pulses by measuring their free-
induction decay3,12 (FID) which, unlike absorption measure-
ments, is sensitive to both absorptive and refractive non-
linearity.] Third, the theory assumes that the spectrum and
phase of the excitation pulses are uniform across the transverse
spatial profile of the pulse (e.g., the beam profile cannot have
spatial chirp). Fourth, it is assumed that the excitation beams
(a, b, and c) have complete transverse spatial overlap
throughout the cell, from the entrance window to the exit
window. An approximate treatment of the distortions caused by
beams that have no transverse overlap in some portion of the
cell is presented below.
The theory excludes nonlinear cascading.53,54 In nonlinear

cascading, a nonlinear signal is generated from one
chromophore, propagates to a second chromophore, and acts
as an input field in generating an effectively higher-order
nonlinear signal from the second chromophore (the prototype
nonlinear cascade uses one second-order nonlinear crystal to
generate the second harmonic and another for mixing the
fundamental and second harmonic to generate the third
harmonic). The only nonlinear cascade contributing to a
third-order signal involves two cascaded second-order non-
linear signals; in an isotropic sample, second-order nonlinear
signals can be generated only at interfaces.55 Second-order
nonlinear cascades are ruled out by the experimental geometry,
which has no beam overlap at the rear interface. As mentioned
above, linear cascading is fully included in the treatment of
propagation distortions here.
In rubidium (Rb) atoms, the D2 (5

2S1/2 → 52P3/2) electronic
transition is isolated from other transitions and obeys a ΔMJ =
0 selection rule for linearly polarized light, suggesting treatment
as an effective two-level system on time scales shorter than that
required for hyperfine interactions to manifest [hyperfine
splittings for the D2 transition are less than 6.8 GHz in 87Rb
(3.0 GHz in 85Rb)56]. Rubidium vapor is an interesting system
for studying the validity of a theoretical model for propagation
distortions since its optical density can be easily varied over an
order of magnitude at constant path length by adjusting the
temperature of a rubidium reservoir.57 Over this range of
atomic density, local field effects can be estimated using eq 27
of ref 13; the calculated magnitude of the field experienced by
each atom differs from the macroscopic field by less than
0.07%, so that the linear and nonlinear polarizability of
noninteracting Rb atoms in argon (Ar) buffer gas should
dictate the macroscopic linear and nonlinear susceptibility to a
similar level of accuracy. The price to be paid is that the line
width, which is dominated by nonresonant pressure broadening
from the Ar buffer gas, increases with temperature due to the
increase in relative intermolecular speed from heating the gas at

constant volume. However, this effect is expected to be modest
over the temperature range (363−433 K) modeled here: the
predicted line width at 433 K is approximately 10% greater than
that at 363 K.59 For low partial vapor pressures (∼1 mTorr) of
alkali metal in noble gases at total pressures of ∼1500 Torr, the
line broadening in absorption is almost Lorentzian, dominated
by pressure broadening from collisions with the noble gas
buffer. For the potassium D1 and D2 lines, four-wave mixing
studies at buffer gas pressures of ∼1500 Torr with ∼200 fs
pulses suggest that the homogeneous optical Bloch model
(uncorrelated collisions) underlying a Lorentzian line shape
accounts for the nonlinear response with an 8 ps dephasing
time scale.60 If the line broadening is dominated by isolated
binary collisions with a buffer gas, as in ref 57, the Bloch model
is expected to be appropriate for Rb vapor. In contrast,
correlated collisions typically necessitate models that include
frequency memory.37 In summary, prior work suggests that the
Rb D2 transition dynamics can be characterized by an optical
Bloch model, and that as temperature is varied, the changes in
its 2DFT spectra should be dominated by optical density
effects.
The homogeneous optical Bloch model includes two

phenomenological dipole dephasing processes, each charac-
terized by a single time constant: the population lifetime, T1,
and the pure dephasing time, T2*. Assuming that only the
excited state population is affected by the population lifetime
T1, the resulting microscopic dipole decay rate is Γ = 1/T2 = 1/
T2* + 1/(2T1).

61 The macroscopic polarization can also decay
through inhomogeneous processes, but this is not included here
because the Doppler and hyperfine widths are negligible
compared to the homogeneous width. Since propagation
distortions alter the macroscopic polarization and, conse-
quently, the radiated signal field, the 2DFT spectrum of an
optically thick sample will not reflect the chromophore’s true
microscopic dynamics. Therefore, caution must be exercised
when interpreting the Bloch model rates since the 2DFT
spectrum of an optically dense sample can be much wider than
that of a thin sample,13 suggesting dephasing times T2 that are
shorter than the true microscopic values. An expression
describing the apparent shortening of T2 in impulsively excited
photon echoes for the homogeneous Bloch model is given by
eq 3 of ref 11. These propagation distortions depend on T1.
On the basis of the known photophysics of the Rb D2 line,

complications that go beyond the two-level Bloch modelbut
that are still compatible with Bloch model 2DFT spectra
should be expected from at least two sources. First, the 27 ns
radiative lifetime of the 2P3/2 excited state exceeds the 13 ns
interval between pulse sequences at a 76 MHz repetition rate
(Ar does not quench Rb D line fluorescence62−65 and known
impurities of N2, H2O, and less than 0.0005% O2 in 99.995%
pure industrial grade Ar suggest a maximum quenching rate64,66

of 6 × 106 s−1). This means that approximately one-third of the
2D signal may derive from prior pulse sequences. Second,
collisions can transfer the Rb atoms out of the optically excited
MJ states (the measured cross sections67,68 predict a ∼20 ps
time scale for loss of rotational alignment). For all-parallel
polarized pulses, the nonlinear response (hence 2DFT spectra)
can be decomposed into a sum of a population response (which
should decay with the population lifetime of ∼27 ns) and an
alignment response (which should decay with the alignment
lifetime of ∼20 ps).69−71 Both alignment and population
nonlinear responses have the same total dephasing time T2

72

which arises primarily from Ar collisions causing either a change
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in phase or a change in alignment, with a much smaller
contribution from the radiative lifetime. As a result, the 2DFT
spectra at the nominal experimental waiting time of T = 200 fs
are expected to be the weighted sum of three parts: (1) a
population 2DFT spectrum with T = 200 fs, population lifetime
T1 = 27 ns, and T2 ≈ 12 ps; (2) a population 2DFT spectrum
with T > 13 ns from prior pulses; and (3) an alignment 2DFT
spectrum with T = 200 fs, alignment lifetime T1 ≈ 20 ps, and T2
≈ 12 ps.76 In addition, hyperfine relaxation is slow so that
parallel polarized optical pumping77 can generate a steady-state
modification of the response.56 Unlike the two effects
mentioned above, hyperfine pumping effects increase the
order of the nonlinear response beyond third order; however,
in steady-state, it can be regarded as modifying the third-order
nonlinear response discussed above. In the absence of
propagation distortions, the three Bloch model 2DFT spectra
expected to contribute to the total 2DFT spectrum are identical
for nominal waiting times T greater than the pulse duration.
This paper follows a paper detailing experimental work by Li

et al.57 on propagation distortions in 2DFT spectra of rubidium
vapor. We present a theoretical and computational treatment of
novel distortions observed in the experimental 2DFT spectra.
However, quantitative modeling of the experimental line shapes
was not attempted for two reasons. First, the asymmetry
between ωτ and ωt line widths in the low-OD experimental
spectra is not recovered by the Bloch model or the Kubo
stochastic model11 (in the slow-, intermediate-, and fast-
modulation limits). Second, the line width and peak OD of
experimental linear absorption spectra are inconsistent with
predicted linear absorption spectra at each experimental Rb
reservoir temperature under the assumption that the Rb vapor
density is given by the vapor pressure of Rb at the
experimentally measured reservoir temperature. In addition,
the line width and peak OD implied by the experimental 2DFT
spectra do not agree with either the experimental or the
predicted linear absorption spectra. Repetitive excitation might
contribute to the latter discrepancies through steady-state
modifications on the effective linear and nonlinear responses. In
the face of these disagreements, the line width was set constant
for all simulated 2DFT spectra in order to focus on qualitative
OD-dependent features present in the experimental 2DFT
spectra. The above disagreements will be addressed further in
the Discussion.

■ THEORY
Propagation Distortions. A complete mathematical

framework for describing propagation and detection distortions
on 2DFT spectra in the 3D frequency domain has been
developed.12−14 This discussion highlights the essentials
necessary to understand the distortions that are the focus of
this work and presents an improved approximation for the
incoherent limit of the propagation function. First, in order to
discuss the propagation of pulses in a sample, we will define the
time domain optical electric field of the excitation pulses,

∫π
ω ω ω= ̂ −

−∞

∞
t tE r E r( , )

1
2

( , ) exp( i ) d
(1)

where r is spatial position, t is time, and ω is the angular
frequency. Ê(r, ω) is the frequency domain complex-valued
electric field,

∭ω
π

ω ω ω̂ = ̂ ̂ ̂ · ̂E r k k r k( , )
1

(2 )
( ( ), ) exp[i ( ) ] d3

3

(2)

where ω ω̂ ̂k( ( ), ) is a “wave” which, when integrated over k̂, is
equal to the frequency domain complex-valued electric field at
the center of the sample entrance plane (r = 0). The spatial
variation of the “wave” simply factors out into exp[ik̂(ω)·r],
where k̂(ω) is the complex-valued wave vector, which
incorporates attenuation of the electric field when propagating
through absorbing media. Representing the pulses as waves is
convenient in that it mathematically separates propagation
effects from the input pulse fields, allowing the propagation
effects to be collected and dealt with separately. Throughout
this paper, vectors and matrices are in bold face type while
complex-valued quantities are marked with a circumflex (or
“hat”). For normal incidence, the wave vector is k̂(ω) = ezn ̂(ω)
ω/c where ez is the unit vector normal to the window−sample
interface and c is the speed of light in vacuum. n ̂(ω) = n(ω) +
iκ(ω) = (ϵ(̂ω)/ϵ0)

1/2 is the complex-valued refractive index,
ϵ(̂ω) is the complex-valued permittivity (dielectric constant),
and ϵ0 is the permittivity of vacuum (MKS units). Attenuation
of the field is contained in the imaginary part of the wave
vector, Im[(k ̂(ω)·k ̂(ω))1/2] = κ(ω)ω/c, which is related to the
napierian (i.e., base e) field attenuation coefficient,78 α(ω) =
κ(ω)ω/c = A(ω)ln(10)/2L, where A(ω) is the decadic
absorbance78 (optical density) and L is the sample length
normal to the window−sample interfaces.13 α and A are linked
by T = I/I0 = e−2αL = 10−A where T is the transmittance of the
sample. The usage of α here for the f ield attenuation coefficient
is not to be confused with the intensity attenuation coefficient
(napierian absorption coefficient), which is also denoted by α
in some cases.78

For a weak absorber (i.e., κ2 ≪ n2), the wave vector can be
expressed in a more general form that is valid for oblique
incidence as well as normal incidence:

ω ω ω κ ω̂ ≈ + ·c nk u e u e( ) ( / )[ ( ) i ( ) /( )]z z (3)

where u is the unit vector along the direction of propagation
(which can be calculated using the ordinary real-valued Snell
law [see eqs A6 and A7 of ref 12]). The real and imaginary
parts of a complex-valued wave vector are normal to planes of
constant phase and amplitude respectively and, therefore, point
in different directions (see Figure 18-6 of ref 79) except for
normally incident light (i.e., u = ez). The factor of 1/(u·ez)
modifies κ to account for the additional path length when
beams are not at normal incidence to the window−sample
interface. This is necessary because Im[k ̂(ω)] is parallel to the
window−sample interface normal, not the propagation vector.
Propagation from the sample cell entrance at r to the sample
cell exit at r + u multiplies the wave by exp[iω(n + iκ) /c],
where = L/(u·ez) is the path length through the sample for a
beam propagating along u.
Given the following three additional assumptions, the

propagation matrix for the 3D frequency domain signal
field12 can be simplified to a scalar:13 (1) well-collimated
beams, (2) transverse electric (TE) polarized beams, and (3) an
isotropic nonlinear susceptibility. Accordingly, vector and
matrix notation are dropped for the fields and susceptibility.
We further assume that the sample and windows have the same
linear optical properties so that no linear reflections are
generated by the window−sample interfaces (see Appendix C
of ref 12). 3D inverse Fourier transformation of the time
domain third-order nonlinear response (eq B3 of ref 12) yields
the 3D frequency domain nonlinear susceptibility, χ ̂(3), which is
multiplied by the three excitation waves (a, b, and c) to form
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the nonlinear polarization wave inside the sample, ̂ (3)
. Further

multiplication by the propagation function, Πexit
(3), gives the

radiated signal wave referenced to the sample exit, ̂
t ;

multiplication by the directional filter function, Φ(3), isolates
the particular phase-matched signal field that is selected for
interference detection with respect to the detection wave, ̂

d.
The detection wave may represent an actual reference pulse
propagating through the sample in the direction of the signal,
but may also represent an artificial wave that incorporates both
the actual reference (which may be routed around the sample)
and measured differences between the actual reference and a
chosen ideal reference (for example, the reference-tracer phase
difference of refs 80, 1, and 3 or the amplitude distortion from
propagating through an absorptive sample treated in ref 13).
The result is the transmitted 3D frequency domain signal

ω

ω
χ

̂ ≈ ̂ ̂*Φ

≈
ϵ

Π ̂ ̂*Φ

≈
ϵ

Π ̂ ̂ ̂ ̂ ̂ *Φ

S

c

c

i
2

[ ]

i
2

[ ( )]

t d

t
d

t
a b c d

3D
(3)

0
exit
(3) (3) (3)

0
exit
(3) (3) (3)

(4)

where â b c d, , , represent the excitation (a, b, c) and detection (d)
pulse waves and ωt = ωc + ωb − ωa is the frequency of the
transmitted signal wave. In eq 4, the arguments of the waves
follow the signs of the frequencies in ωt: ω̂ −( )a a , ω̂ ( )b b ,

ω̂ ( )c c , and ω̂ *( )d t .
12 (For waves, changing the sign of the

frequency argument has the same effect as complex
conjugation.) The mathematical form of the directional filter
is given by eq 56 of ref 12. For this experiment, Φ(3) is over 50
times wider than the experimental 2DFT spectrum and has no
significant effect beyond selecting only two conjugate octants of
the 3D frequency domain signal, which physically reflects
detection of signal from only one phase-matched direction.
Within the rotating-wave approximation, the directional filter is
implemented here by calculating the nonlinear response using
only diagrams that give a phase-matched signal for the detected
beam. Given the three assumptions listed above, the
propagation function takes the form (eq 9 of ref 13)

where k̂a,b,c,s
0 are the complex-valued frequency-dependent

central wave vectors of the excitation pulses (a, b, c) and the
signal (s) inside the sample, ωt is the frequency of the
transmitted signal wave, and Δk0̂ = k̂p

0 − kŝ
0 is the complex-

valued 3D phase mismatch between the nonlinear polarization
and signal waves, with central wave vectors k ̂p0 and k ̂s0
respectively. A superscript “0” indicates use of the central
wave vector approximation. The true wave vector distribution
of each beam includes the angular spread of wave vectors
needed for the focused beam diameter. In the central wave
vector approximation, the propagation function is evaluated at
each beam’s central wave vector. This approximation requires
well collimated beams and is implicit in the use of a directional
filter, which accounts for the wave vector distribution.12 In the
limit of (Δk ̂0·ez)L ≪ 1 and small beam crossing angles, the

propagation function approaches the normal incidence result,
Πexit

(3) ≈ [L/n ̂(ωt)]exp[i(kŝ
0·ez)L]. The proportionality to L

physically represents perfectly phase-matched growth of signal
over the length of the sample and the exponential represents
linear propagation. For a sample much thinner than a
wavelength of light, the normal-incidence propagation function
further simplifies to Πexit

(3) ≈ L/n ̂(ωt).
In the rectangular BOXCARS geometry, three parallel

excitation beams are arranged such that each intersects the
corner of a rectangle. The beams are focused into the sample,
producing a signal beam which intersects the fourth corner of
the rectangle (see Figure 1 of ref 13) if all four frequencies are
the same. The nonlinear polarization wave has central wave
vector

ω ω ω ω̂ = ̂ − + ̂ + ̂k k k k( ) ( ) ( ) ( )p t a a b b c c
0 0 0 0

(6)

determined by the three excitation pulse wave vectors.12 k̂p
0 is a

function of all three input frequencies; this dependence is
suppressed here for compactness. The imaginary part of
k ̂a0(−ωa) correctly incorporates attenuation of forward prop-
agating pulse a [−kâ0(ωa) = k̂a

0(−ωa)* attenuates backward
propagation and would incorrectly amplify forward propaga-
tion]. Maxwell’s equations require12 that the signal wave vector
obeys the boundary condition

̂ · = ̂ ·k e k es x y p x y
0

,
0

, (7)

with

ω ω ω ω̂ · ̂ = ̂γ γ c nk k( ) ( ) ( / ) ( )
0 0 2 2 2

(8)

for all four beams (γ = a, b, c, s). k̂s
0 is also a function of all three

input frequencies. Equation 8, which applies to linearly
propagating electromagnetic waves, need not hold for the
nonlinear polarization wave vector: for unequal input
frequencies, the real parts of the signal and polarization wave
vectors can differ in both magnitude and direction (see Figure 1
of ref 13); for equal input frequencies in the rectangular
BOXCARS geometry, the imaginary part of the polarization
wave vector is 3 times greater than the imaginary part of the
signal wave vector, reflecting attenuation of all three excitation
beams.
The 3D nonlinear susceptibility, χ ̂(3), is multiplied by the

propagation function (eq 5), the excitation pulse waves ̂( )a b c, , ,

the detection pulse wave ̂ *( )d , and the directional filter to
produce the distorted 3D frequency domain signal

ω ω ω

ω
χ ω ω ω

ω ω ω

ω ω ω ω

̂ − − ≈ Π ̂ ̂ ̂

·
ϵ

̂ −

· ̂ − ̂ ̂

· ̂* ̂ Φ − −

S L

c

k k k

k

( , , ) ( , , , )

i
2

( , , )

( ) ( ) ( )

( , ) ( , , )

a b c a b c

t
a b c

a a b b c c

d d t a b c

3D exit
(3) 0 0 0

0

(3)

(3)
(9)

The distorted 3D frequency domain signal is triple Fourier
transformed into the 3D time domain using eq 15 of ref 13.
Given that ta ≤ 0, tb ≤ 0, and tc = 0 are the experimentally
controlled arrival times of pulses a, b, and c, respectively, we
define the time intervals T ≡ min(|ta|,|tb|) and τ ≡ tb − ta. The
time domain 2D signal, S2D(t, τ; T), at fixed waiting time T is
extracted from the 3D time domain signal according to13
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τ τ θ τ
τ θ τ

= + + +
+ + − + −

S t T S t T t T t
S t T t T t

( , ; ) ( , , ) ( )
( , , ) ( )

2D 3D

3D (10)

where θ(τ) is the Heaviside unit step function.81 The time
domain 2D signal from eq 10 is inverse Fourier transformed
(along τ and t) back to the frequency domain to produce the
complex-valued 2DFT spectrum,

∫ ∫ω ω
ω ω

τ

ω τ ω τ

̂ =

×

τ

τ

−∞

∞

−∞

∞
S T

e
S t T

t t

( , ; )
1
( )

( , ; )

exp(i ) exp(i ) d d

t
t t

t

2D 2D

(11)

where e(ωt) is the detection pulse field’s frequency envelope
(this division removes frequency filtering by the detection
field), and ωt and ωτ are conjugate to t and τ, respectively.
Division by ωt removes the radiative distortion that is
introduced by the factor of ωt on the second line of eq 9.
The form of the detection envelope in eq 11 depends on the
detection geometry utilized and will be specified for each
representation discussed below.
To calculate the complex-valued rephasing 2D spectrum, only

the positive-τ part of the time domain 2D signal is inverse
Fourier transformed:

∫ ∫ω ω
ω ω

τ θ τ

ω τ ω τ

̂ =

×

τ

τ

−∞

∞

−∞

∞
RS T

e
S t T

t t

( , ; )
1
( )

( , ; ) ( )

exp(i ) exp(i ) d d

t
t t

t

2D 2D

(12)

Multiplication by the Heaviside unit step function (see p. 61
of ref 81), θ(τ), in eq 12 selects the positive-τ rephasing pulse
ordering, where pulse a comes before pulse b, by multiplying
S2D(t, τ < 0, T) by 0, S2D(t, τ = 0, T) by 1/2, and S2D(t, τ > 0,
T) by 1; this is equivalent to neglecting the second term in eq
10. The factor of 1/2 at τ = 0 is essential to prevent baseline
offset in a discrete Fourier transform.81 In this paper, all
rephasing spectra will be indicated by “R”. Most of the 2DFT
spectra depicted here are calculated according to eq 12 to allow
for direct comparison to the experimental work by Li et al.57

Since it is instructive to compare distorted and undistorted
2DFT spectra, we define the ideal (undistorted) 2DFT
spectrum, S2̂D

ideal, which is calculated using eq 11 where the
propagation function is taken to be

ω
Π =

·
=

·
L

L
c

L
k e u e

( )
( ) ( )

t

sv z s z
exit
ideal

0
(13)

where ksv
0 is the real-valued signal central wave vector in vacuum

and us is the unit propagation vector of the signal beam. This
“ideal” propagation function is valid for samples with no
absorptive or refractive effects (i.e., n ̂ = 1) and neglects the
effect of phase mismatch, which even in vacuum only vanishes
for collinear beams or zero sample length.13 Vacuum phase
mismatch is negligible in the experiment of Li et al.,57 making
eq 13 a good idealization for this work. Since all of the
representations of the 2DFT spectrum discussed in the next
section are equivalent in the limit of optically thin samples, the
ideal 2DFT spectrum requires no indication of representation
and is directly comparable to distorted spectra in any
representation.

■ REPRESENTATIONS OF THE 2DFT SPECTRUM

Experimental Distinctions. In order to address the form
of the detection field, the experimental detection geometry
must be discussed. In 2DFT spectroscopy, the amplitude and
phase of the signal field is retrieved by interference with a
detection field. Since the 3D signal (eq 4) is dependent on the
detection field, it must be well characterized to extract the
signal field from the spectral interferograms. The detection field
is used to establish the zero of spectral phase, which also
specifies the time axis for the signal field relative to the
excitation pulses. The three representations of 2DFT spectra
used here (attenuated, FID-referenced, and time-referenced)
have been discussed in more detail elsewhere.13,14

Experimentally, either the tracer beam (“ref II”57) or the
reference beam (“ref I”57) can be used for interferometric
detection of the signal field. The amplitude and phase of the
detection field directly influence the amplitude and phase of the
2DFT spectrum extracted from experimental interferograms
and can be used to approximately remove certain propagation
distortions. The cost of changing representations is that the
2DFT spectrum may no longer be an accurate representation of
the signal field that exits the sample. In the BOXCARS
geometry, the tracer beam occupies one corner of the rectangle
formed on the focusing lens by it and the three excitation
beams and copropagates with the signal through the sample
and on to the detector.3,80 Since the tracer copropagates with
the signal, it accrues the same linear absorptive and dispersive
distortions as the signal through the sample and common path
optics. However, the tracer can influence or be influenced by
nonlinear interactions with the excitation pulses. The reference
beam bypasses the sample, but later rejoins and copropagates
with the signal beam to the detector. In bypassing the sample,
the reference beam avoids all sample-induced distortions.
However, this also means that it encounters a different set of
optics and travels a different length, taking on phase and
attenuation that is not common to the signal. The tracer can be
used without the excitation pulses to characterize the time
origin and phase of the reference beam relative to the excitation
pulses at the sample.3,80 For a depiction of the experimental
geometry, see Figure 2 of ref 57.

Attenuated. In the attenuated representation of the 2DFT
spectrum, the tracer beam, which propagates along the same
path as the signal through the sample, serves directly as the
detection field.13 In this case, assuming a weakly absorbing
sample, the complex-valued wave vector of the detection beam
is given by

ω
ω

ω
κ ω̂ = +

·

⎡
⎣⎢

⎤
⎦⎥c

nk u
u e

e( ) ( ) i
( )

( )d t
t

t d
t

d z
z

0

(14)

where ud is the unit propagation vector of the detection beam,
whichfor the BOXCARS geometryis collinear with the
central wave vector of the tracer beam. In the square
BOXCARS geometry, with the detection beam aligned such
that ud = uc + ub − ua, Maxwell’s equations guarantee that the
components of the wave vector parallel to the window−sample
interface are the same for k̂s

0 and k ̂d0 (hence kŝ0 = k̂d
0 and us = ud

when all four frequencies are the same). Thus, all effects for the
parallel components of kŝ

0 and k̂d
0 automatically cancel (recall

that the imaginary part of a wave vector attenuates the wave
along an axis normal to the window−sample interface). At the
sample exit plane (z = L), the detection wave has the form
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ω ω ω̂ = ̂ ̂ · Lk e( ) ( ) exp{i[ ( ) ] }d t d t d t z
0 0

(15)

where ω̂ ( )d t
0

is the detection wave at the sample entrance (r =
0) for zero delay. Since the tracer and signal take the same path
through the sample, the tracer beam experiences approximately
the same attenuation and dispersion as the signal [k̂d

0(ωt) ≈
k̂s
0(−ωa, ωb, ωc)]. This approximation is valid within a 3D
signal frequency-bandwidth inversely proportional to the
excitation beam crossing angles, is good when the signal
beam is well-collimated, and is an equality for collinear
excitation beams at normal incidence. Replacing k̂d

0 with k ̂s0
yields

ω ω ω ω ω̂ ≈ ̂ ̂ − · Lk e( ) ( ) exp{i[ ( , , ) ] }d t d t s a b c z
0 0

(16)

for the detection wave at the sample exit plane. For small angles
of incidence or when κ2 ≪ n2, this further simplifies to

ω ω
ω

ω
κ ω̂ ≈ ̂ · −

·⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬
⎭c

n Lu e
u e

( ) ( ) exp i( ) ( )
( )

( )d t d t
t

d z t
t

d z

0

(17)

To calculate the attenuated rephasing 2DFT spectrum
[RS2̂D

− (ωt , ωτ; T)] from eq 12, eq 16 is used as the detection
wave in eq 9, taking e(ωt) = 1 for the detection pulse field
envelope. Using e(ωt) = 1 does not remove the filtering effect
of the detection field’s spectrum on the amplitude of the signal
field when recovering the field from spectral interferograms. As
a result, the real part of the attenuated 2DFT spectrum, when
integrated over ωτ, becomes equal to the spectrally resolved
pump−probe signal when directional filtering distortions are
negligible.13

The approximate substitution of kŝ
0 for k ̂d0 in the exponential

term of eq 16 is useful in that it reveals cancellation of the
imaginary part of the final exponential term in the propagation
function (eq 5) when both equations are combined to form the
3D signal (eq 4). In contrast, the real parts have the same sign
and, consequently, add. Physically, this signifies that while there
is cancellation of phase evolution between the signal and tracer
(i.e., no relative phase), the attenuation of the signal and
detection fields is additive, resulting in stronger absorptive
distortions in the 2DFT spectrum. The spectra measured using
the “reference through the sample” in the work by Li et al.57 are
fundamentally attenuated rephasing 2D spectra. However, the
spectra depicted in Figures 4 and 5 of ref 57 have been
processed with a time domain filter and are no longer in the
RS ̂2D− representation. The effect of this filter is discussed in the
section “Pseudo−Time Domain Filtering” below.
FID-Referenced. While the tracer can be used as the

detection field for interferometric detection, attenuation and
dispersion of the tracer in an absorptive sample can introduce
distortions into the measured 2DFT spectrum. In addition, if
the tracer falls within the time window of the sample nonlinear
response, it has the potential to interact with the sample in such
a way as to alter the radiated signal field or be altered by
nonlinear interaction with the sample. To avoid such
attenuation and nonlinear interaction, the tracer can be used
to characterize the reference and then can be blocked during
the experiment, using the reference beam directly for
interference detection.80 In this case, the tracer must be used
to characterize the FID phase accrued by the signal in
traversing the sample. Under the same approximations as eq
16, this detection geometry results in the detection wave

ω ω ω ω ω̂ ≈ ̂ ̂ − · Lk e( ) ( ) exp{iRe[ ( , , ) ] }d t d t s a b c z
0 0

(18)

which can be used in eq 9 to calculate the FID-referenced
rephasing 2DFT spectrum, RS2̂D

0 (ωt, ωτ;T), from eq 12 given

that e(ωt) = | ω̂ ( )d t
0

|. For small angles of incidence or when κ2

≪ n2, this further simplifies to

ω ω ω ω̂ ≈ ̂ · n L cu e( ) ( ) exp[i ( ) ( ) / ]d t d t t d z t
0

(19)

The FID-referenced representation differs from the attenu-
ated representation in dividing by the detection pulse frequency
envelope to remove its filtering effect and in using a detection
wave that is not attenuated by sample absorption. Both S ̂2D− and
S ̂2D0 have the FID phase removed through cancellation with the
FID phase on the detection wave, resulting in a physically
meaningful separation of the 2DFT spectrum into absorptive
(real) and dispersive (imaginary) parts.13 However, this comes
at the expense of losing a causal time origin such that the 2DFT
spectrum of an optically thick sample contains signal that
appears to arrive before pulse c.
Fundamentally, the spectra denoted by “reference around the

sample” in the work by Li et al.,57 such as those in Figure 3 of
ref 57, are measurements of the FID-referenced rephasing 2D
spectrum. However, since only the amplitude (absolute value)
of the experimental spectra is shown in ref 57, the phase
evolution contained in the exponential term in eq 18 is hidden.
An approximation to RS ̂2D0 can be calculated by transforming

the attenuated 2DFT spectrum RS ̂2D− (where the tracer is used
as the detection wave) to account for the detection wave and its
attenuation. This procedure results in

ω ω ω ω

ω ω

ω ω

ω ω κ ω

̂ ≈ ̂

·| ̂ | ̂ ·

≈ ̂

·| ̂ |

τ τ

τ

−

−

RS T RS T

L

RS T

c

k e

( , ; ) ( , ; )

( ) exp{Im[ ( ) ] }

( , ; )

( ) exp[ ( ) / ]

t t

d t d t z

t

d t t t

2D
0

2D

0 0

2D

0
(20)

where = L/(ud·ez) is the path length through the sample cell
for the detection beam and RS2̂D

− (ωt , ωτ;T) is the attenuated
rephasing 2D spectrum as described in the previous section.
This is an approximation insofar as it substitutes the
attenuation of the signal along the complex-valued central
wave vector of the detection beam in the sample, k̂d

0(ωt), for the
true signal attenuation in k̂s

0 given by eqs 6−8, which involves a
range of wave vectors that are dependent on all three excitation
frequencies.

Time-Referenced. Neglecting the effects of signal field
propagation, the time-referenced 2D spectrum is a direct
reflection of the underlying bulk nonlinear polarization of the
sample. This representation is calculated using

ω ω ω ω ω̂ = ̂ − · Lk e( ) ( )exp{i[ ( , , ) ] }d
t

t d t sv a b c z
0 0

(21)

as the form of the detection wave where ksv
0 is the signal central

wave vector in vacuum. The time-referenced rephasing 2D
spectrum, RS ̂2Dt (ωt , ωτ;T), is calculated from eq 12 by using eq

21 as the detection wave in eq 9 given that e(ωt) = | ω̂ ( )d t
0

|.
RS ̂2Dt can be calculated in an approximate way starting from

RS2̂D
0 :
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ω ω ω ω

ω ω

̂ ≈ ̂

× ̂ − ·

τ τRS T RS T

Lk k e

( , ; ) ( , ; )

exp{iRe[ ( ) ( )] }

t
t t

d t dv t z

2D 2D
0

0 0

(22)

where kdv
0 is the real-valued central wave vector of the detection

beam in vacuum and kd̂
0 is the complex-valued central wave

vector of the detection beam in the sample. The exponential in
eq 22 approximates the FID phase due to the sample by using
the central wave vector of the detection beam, which depends
on only one frequency, instead of the wave vector of the signal,
which depends on all three excitation frequencies. This
approximation, just as with eqs 16 and 18, is valid for a well-
collimated signal beam and becomes exact for collinear
excitation beams at normal incidence. Time-referenced 2DFT
spectra have delays from the refractive index of the sample
because they are time-referenced to when pulse c would emerge
from the sample if it propagated through vacuum. The time-
referenced and FID-referenced representations only differ in
the phase of the detection field and, consequently, the phase of
the 2DFT spectrum. Therefore, the absolute value 2DFT
spectra in these representations are identical: |RS ̂2Dt | = |RS ̂2D0 |.
However, the phase differences between time-referenced and
FID-referenced 2DFT spectra cause them to be affected
differently by time domain filters.
Transformation of 2DFT Spectra. As demonstrated by

Yetzbacher et al.,13 it is possible to transform calculated and
experimental 2DFT spectra in such a way as to approximately
remove the distortions caused by attenuation of excitation and
signal fields. The result is the excitation−detection transformed
2D spectrum,

ω ω
ω

ω

ω

ω ω

ω κ ω
ω κ ω

ω κ ω

ω ω

̂ =
̂ ·

− − ̂ ·

× ̂ ·

× ̂

≈
− −

×

× ̂

τ
τ τ

τ τ

τ

τ τ

τ τ

τ

++
S T

L

L

L

S T

c
c

c

S T

k e

k e

k e

( , ; )
2Im[ ( ) ]

1 exp{ 2Im[ ( ) ] }

exp{Im[ ( ) ] }

( , ; )

2 ( ) /
1 exp[ 2 ( ) / ]

exp[ ( ) / ]

( , ; )

t
z

z

d t z

t

t t

t

2D

0

0

0

2D
0

2D
0

(23)

where kτ̂
0 is the central wave vector of the initial excitation pulse

(kâ
0 or k̂b

0). The second expression in eq 23 arises from
approximating k̂0(ω) using the approximation of eq 3, which is
valid as long as either κ2 ≪ n2 or the angle of incidence is small
(i.e., u ≈ ez). In the rectangular BOXCARS geometry, 2α and
2β are defined as the external crossing angles (in vacuum or air)
between beams a and c (as well as b and d) and beams a and b
(as well as c and d), respectively.12 In this geometry, the path
length through the sample is given by = L/γ where γ = u·ez =
(n − sin2α − sin2β)1/2/n and is equal for all beams (a, b, c, and
d), permitting use of the same in eq 23 for propagation along
both the excitation dimension (ωτ) and the detection
dimension (ωt). Equation 23 neglects vacuum phase mismatch
so that us ≈ ud. A reformulation of eq 23 in terms of the
absorbance of the sample is given by

ω ω
ω γ

ω ω

̂ ≈
−

×

× ̂

τ
τ

ω γ

ω γ

τ

++
− τ

S T
A

S T

( , ; )
( )ln(10)/

1 10

10

( , ; )

t A

A

t

2D ( )/

( )/(2 )

2D
0

t

(24)

where A(ω) is the decadic absorbance at normal incidence. In
the limit of no coherence (i.e., ωt = ωc and ωa = ωb), eqs 23 and
24 recover the ideal 2DFT spectrum, S ̂2Dideal.

Analytic Bloch Model 2DFT Spectrum. An analytic form
is known for the impulsive correlation (waiting time T = 0) and
relaxation (T > 0) 2DFT spectra of the homogeneous optical
Bloch model:82

where

ω
ω ω

= Γ
− + Γ

a( )
( )eg

2

2 2
(26)

and

ω
ω ω

ω ω
=

− Γ

− + Γ
d( )

( )

( )
eg

eg
2 2

(27)

are Lorentzian absorptive and dispersive line shape functions,
respectively, with central transition frequency ωeg and width
defined by Γ, the Bloch microscopic dipole decay rate. Γ is
equal to the half-width at half maximum (hwhm) of a
Lorentzian absorptive line shape and is the inverse of the
dipole decay (or dephasing) time: Γ = 1/T2. The 2D spectra in
eq 25 have two peaks: one at (ωeg,−ωeg) on the first three lines
and one at (−ωeg,ωeg) on the last three lines. Because these two
peaks are related by complex conjugation and frequency sign
reversal, only the first peak is shown in figures. Equations 26
and 27 differ from eq 18 of Gallagher Faeder and Jonas82 in
that they have been peak normalized through multiplication by
Γ. Here, “impulsive” is used to signify that pulses a, b, and c
have δ-function time domain profiles. Although the analytic
2DFT peak shape in eq 25 is a sum of product peak shapes that
have no correlation between the two dimensions ωτ and ωt, the
2DFT peak shape does exhibit correlation at T = 0. This
analytic form is useful in that it can be compared to numerical
calculations to confirm that they accurately reproduce the
spectral line shape in the Bloch limit, which serves as a basis for
understanding more complex coherent phenomena that occur
as a function of T with the introduction of propagation
distortions.
The absolute value of the impulsive rephasing 2DFT peak

shape was experimentally measured by Li et al.57 For the
homogeneous optical Bloch model, the one-dimensional
absolute value line shape is (a2 + d2)1/2 = a1/2, and the
absolute value rephasing 2DFT peak shape at (ωeg,−ωeg) for
positive T is given by
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(28)

with fwhm = 2Γ√3 in both the ωt and ωτ dimensions (a √3
increase in line width for both dimensions compared to the real
2DFT relaxation spectrum). As will be shown below, the
distortions of 2D peak shapes in absolute value rephasing
spectra are more complicated than those for 2D peak shapes in
relaxation spectra.
Incoherent 2D Propagation Function. The incoherent

limit of the propagation function depends on only two
frequencies and serves as an exact baseline for identifying
coherent transient propagation effects. Multiplying the
propagation function in eq 5 by the complex conjugate of the
propagation factor for the detection field, exp[iRe(k̂s

0·ez)L]*, as
indicated by eqs 4 and 18, yields

ω
Π ̂ ̂ ̂ − ̂ · =

̂ ·

·
Δ ̂ · −

Δ ̂ ·
− ̂ ·

L L
c

L
L

k k k k
k e
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k e
k e

( , , , ) exp[ iRe( e ) ]
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exp[i( ) ] 1

i( )
exp[ Im( ) ]

a b c s z
t

s z

z

z
s z

exit
(3) 0 0 0 0

0

0

0
0

(29)

This form of the propagation function is specific to FID-
referenced 2DFT spectra. Incorporating eqs 44 and 47 of ref 12
for kŝ

0 and Δk0̂ plus the three assumptions listed below, the 3D
propagation function in eq 29 can be simplified to a 2D
function of ωτ and ωt. First, the signal is assumed to be
generated in the incoherent limit where ωa = ωb ≡ ωτ and ωc =
ωt. Second, it is assumed that the sample is weakly absorbing
(k2 ≪ n2) such that the approximate form of the wave vector in
eq 3 is valid. Third, n̂zs and nẑ are approximated as equal, which
assumes that |4(ωτ/ωt)(1 − ωτ/ωt)sin

2β| ≪ 1 (i.e., the limit of
small fractional bandwidth Δω/ω and small angles of
incidence). Under these conditions, eq 29 simplifies to

The factor of 1/n̂zs(ω) arises from the boundary conditions for
Maxwell’s equations at the sample−window interfaces.12

Substituting κz(ω) = κ(ω) /L as implied by eqs 41 and 42 of
ref 12, we arrive at the incoherent propagation function
appropriate for FID-referenced 2DFT spectra

All factors besides L/n ̂zs(ω) represent absorptive propagation
distortions and tend to unity as the sample length tends to
zero.83 n ̂zs(ω) physically represents the effective complex-valued
refractive index for the z-component of propagation of the
signal field and is applicable to pulses with arbitrary angles of
incidence α and β (see eq 45 of ref 12). The imaginary
component of the complex-valued refractive index can be
expressed in the convenient form

κ ω
ω

α ω= c
a( ) ( )

eg
max

(32)

where αmax = α(ωeg) is the peak attenuation coefficient. a(ω) is
the absorptive line shape function which, for the homogeneous
Bloch model, is given by eq 26. The propagation function in eq
31 is almost the inverse of the excitation−detection trans-
formation in eq 23, but differs by a factor of L/nẑs(ωt) which
can contribute a phase shift from the sample−window
interfaces when κ is not negligible compared to n. In the
incoherent limit, the FID-referenced 2DFT spectrum becomes

ω ω ω ω

ω ω

̂ ≈ ̂

×
Π

Π

τ τ

τ

S T S T

L
L

( , ; ) ( , , )

( , , )

( )

t t

t

2D
0

2D
ideal

2D
0

exit
ideal

(33)

where Πexit
ideal(L) = in the rectangular BOXCARS geometry.

To calculate the attenuated 2DFT spectrum starting from eq
31, the factor of exp{−Im[k ̂s0(−ωa,ωb,ωc)·ez]L} ≈ exp[−
ωtκ(ωt) /c] in eq 16 is incorporated into the propagation
function, resulting in a form that is specific to the attenuated
2DFT spectrum:

The modified propagation function in eq 34, when applied to
the analytic 2DFT signal calculated using eq 25, yields

ω ω ω ω

ω ω

̂ ≈ ̂

×
Π

Π

τ τ

τ

−

−

S T S T

L
L

( , ; ) ( , , )

( , , )

( )

t t

t

2D 2D
ideal

2D

exit
ideal

(35)

The analytic expressions in eqs 33 and 35 are useful for
comparison to numerical calculations of Ŝ2D

0 and S ̂2D−
respectively, which should match the analytic results for the
limit in which both T ≫ T2 and 2T1 ≫ T2. While likely more
stringent than necessary, these two conditions are sufficient to
guarantee that S ̂2D(ωt ,ωτ;T) ∝ ∫ −∞

∞ Ŝ2D(ωt ,ωτ;T)dT. By the
projection−slice theorem,81,84 this proportionality to the
waiting-time−averaged 2DFT spectrum guarantees that a
2DFT spectrum has ωT = |ωa − ωb| = 0, implying ωa = ωb
and, consequently, ωc = ωt. In this circumstance, the analytic
forms of the propagation function in eqs 31 and 34 must be
valid for any relaxation model. These two conditions imply
both that the waiting time must be long enough that all
dynamics in T are finished (T ≫ T2) and that the lifetime is
sufficiently long that incoherent population relaxation com-
pletely dominates the time-averaged 2DFT spectrum (2T1 ≫
T2).

■ COMPUTATION
Methods. The program used to calculate 2DFT spectra was

written in Fortran 95/2003 and compiled using the Intel Visual
Fortran Compiler Professional 11.1.070.85 This program was
executed on a computer with a 3.2 GHz Core i7 processor and
24 GB of random access memory (RAM) running 64-bit
Windows 7 Professional. The calculations utilized a grid size of
10243, where each grid point is a complex, double-precision
number, requiring a total of ∼17 GB of RAM and ∼8 min of
execution time. Complex, double-precision Fourier transforms
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were accomplished using the DFFT3B, DFFT3F, DFFT2B,
and DFFT2F subroutines of the International Mathematics and
Statistics Library (IMSL) Fortran Numerical Library version
6.0.86

Approximations. While the effects of finite-bandwidth
excitation pulses are easily handled in the 3DFT approach,
excitation pulses have been approximated as δ-function pulses.
This is a good approximation for this study since the bandwidth
of the excitation pulses (Δωfwhm/2πc ≈ 126 cm−1) is 250 times
greater than the line width of the D2 transition (Δωfwhm/2πc ≈
0.5 cm−1). The effects of this approximation are even smaller
than the effects of neglecting the directional filtering distortions
discussed previously. Over the frequency range shown, the
maximum fractional error in the linear susceptibility from the
rotating-wave approximation28 is less than 10−4, so rotating-
wave errors in the 2DFT spectrum are expected to be
negligible. The expressions for testing the applicability of the
3DFT approach developed by Yetzbacher et al.13 indicate that
the conditions of the experiment by Li et al.57 satisfy the
essential assumptions implicit in the 3DFT theory with one
exception: significant error arises from the assumption that
excitation beams have complete transverse overlap, as will be
discussed below.
Estimation of Convergence. To characterize the error

associated with using a discrete and finite-size grid in these
calculations, four types of convergence tests were performed.
First, the effect of using a grid with a finite time range was
explored by comparing two S ̂2D− absolute value 2DFT spectra
calculated using different grid sizes (5123 vs 10243) with
identical time domain sampling intervals. The two compared
spectra have the same frequency range because they have the
same time step size, but have frequency step sizes differing by a
factor of 2 due to their different time ranges. This type of
comparison is used to expose problems associated with finite
frequency resolution and, equivalently, a finite time range. The
percent difference between 2DFT spectra calculated on the two
grid sizes is determined by subtracting the absolute value
spectra at common (ωτ, ωt) grid points and then dividing by
the global maximum of the 2DFT spectrum. For all calculations
reported here, the difference between these absolute value
spectra at any point is less than 1.5% of the maximum. This
error appears as ringing along the 2D diagonal.
Second, the effect of using a grid of discrete time points was

tested by comparing two S ̂2D− absolute value 2DFT spectra, one
on a 10243 grid and the other on a 5123 grid with double the
time step size. Since both spectra have the same time range,
they have an identical frequency step size. However, the spectra
have different time step sizes, resulting in different frequency
ranges. This comparison is meant to uncover errors related to
the finite frequency range and, equivalently, the finite time
resolution of the calculation. In order to compare the two
spectra, the spectrum calculated using a 10243 grid is cropped
to the same frequency range as the spectrum calculated on a
5123 grid. For all calculations reported here, the difference
between these absolute value spectra at any point is less than
4.5% of the maximum. Consistent with eq 25, this error arises
from the imaginary (refractive) peak shape at the edge of the
grid as discussed in “Comparison to Analytic Theory.”
Third, the deviation caused by using a long excited state

population lifetime (T1 = 30 ns in most simulations) compared
to the time range of the 3DFT grid (∼0.87 ns in most
simulations) has been characterized. To adequately resolve
sharp features in the core of the 2D peak shape, which are

dominated by fast dephasing dynamics (≲ 20 ps for the D2
transition of Rb under the conditions of interest here57) and
propagation distortions, a grid step size of 850 fs was used in
most of the simulations. To quantify the effect of time domain
truncation of slow excited state population relation dynamics, a
2DFT spectrum simulated directly at T1 = 30 ns was compared
to a 2DFT spectrum that was point-by-point linearly
extrapolated, as a function of 1/T1, from T1 = 120 ps and T1
= 240 ps to T1 = 30 ns. In both cases, the spectra were absolute
value time-referenced rephasing 2DFT spectra (|RS ̂2Dt |) with
ODmax = 1.14; grid time step, 850 fs; grid size, 10243; dephasing
rate, Γ/2πc = 0.265 cm−1; center frequency, ωeg/2πc = 12816.7
cm−1 mixing time, T = 850 fs; sample thickness, L = 500 μm;
and crossing angles, α = β = 4.84°. The maximum absolute
deviation between the 2DFT spectrum extrapolated to T1 = 30
ns from untruncated time domain data and that calculated
directly at T1 = 30 ns is less than 0.5% of the maximum.
Fourth, the effect of using a longer waiting time (T = 850 fs

in most simulations) than that of the experiment (T = 200 fs)
was determined. Since the nonlinear polarization is calculated
on a 3D grid of evenly spaced time/frequency points, choice of
waiting times is restricted to integer multiples of the grid time
step size. To quantify the difference between simulations at the
experimental waiting time versus a longer waiting time, 2DFT
spectra simulated at T = 200 fs and a grid time step of 200 fs
were compared to 2DFT spectra simulated at T = 850 fs and a
grid time step of 850 fs. In both cases, the spectra were absolute
value time-referenced rephasing 2DFT spectra (|RS ̂2Dt |) with
ODmax = 1.14; grid size, 10243; dephasing rate, Γ/2πc = 0.265
cm−1; excited state lifetime, T1 = 30 ns; center frequency, ωeg/
2πc = 12816.7 cm−1; sample thickness, L = 500 μm; and
crossing angles, α = β = 4.84°. The maximum absolute
deviation between these 2DFT spectra is less than 3.6%. This
difference is largely the result of the two 2DFT spectra having
dissimilar frequency ranges and is consequently isolated to the
wings of the 2D peak shape. Deviations within the core of the
peak are less than 1.5% of the maximum.

Comparison to Analytic Theory. The convergence tests
above quantify precision deficiencies of the second most
converged calculation. Comparisons to analytic theory are used
to assess the absolute accuracy of the most converged
calculations in specific limits. The analytic form of the impulsive
Bloch 2DFT spectrum in eq 25 can be used to calculate spectra
for comparison to spectra calculated using the 3DFT method
with OD = 0. This comparison can serve as a test that the
3DFT calculation accurately reproduces the peak shape of the
Bloch 2DFT spectrum when propagation distortions are absent.
Analytic 2DFT spectra that include propagation distortions

have also been derived above for checking numerical results.
The 2D form of the propagation function presented in eq 34 is
valid in the limit that T ≫ T2 and 2T1 ≫ T2. The 2D
propagation function (eq 34) can be multiplied by the analytic
impulsive Bloch 2DFT spectrum (eq 25) to produce an analytic
S ̂2D− spectrum (eq 35) for comparison to Ŝ2D

− spectra calculated
numerically using the 3DFT method. The results of this
comparison are shown in Figure 1 for ODmax = 1. In contrast to
the single peak of the ideal absolute value 2DFT relaxation
spectrum calculated from eq 25, both spectra have a vertical
gash from absorption at ωt = ωeg, which generates peak
splitting. The primary difference between the analytic S ̂2D−
spectrum in Figure 1a and the numerical S2̂D

− spectrum in
Figure 1b is that the wings of the line shape in the ωt dimension
of the numerical spectrum are lower than those of the analytic
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spectrum. This effect becomes more pronounced with
increasing |ωt − ωeg| and reaches a value of 4.2% at the edge
of the plot.
Given that the majority of the spectral amplitude in the wings

of a Bloch line shape is in the imaginary part, which contains
information regarding refractive effects that are dominated by
short-time dynamics, most of the disagreement between the
analytic and numerical spectra in Figure 1 is confined to the
imaginary part of the spectrum. The real parts of the numerical
and analytic Ŝ2D

− spectra differ by less than 0.7% for ODmax = 1.
The differences in Figure 1 are an artifact of the Fourier-

transform since they occur near the edges of the 2DFT grid
where the signal amplitudes must be equal due to the cyclic
nature of the conjugate axis in the FFT algorithm (see Figure
11.4 of ref 81). Since the FFT of a real-valued time domain

signal obeys S ̂(−ω) = Ŝ*(ω), the imaginary part of the
frequency domain spectrum has odd symmetry and, therefore,
must tend toward zero at the edge of the frequency domain
grid. The magnitude of this artifact will be negligible in the limit
that the frequency range of the 3DFT grid is much greater than
the line width of the spectrum.
Motivated by the disagreement between experiment and

simulation with regard to the magnitude of absorptive
distortions at a given optical density, a comparison between
2D propagation function “spectra” calculated by the 3DFT
method and those calculated from a simple analytic expression
was undertaken to verify, at least in the incoherent limit, that
the 3DFT method correctly accounts for the magnitude of
signal attenuation. When 2T1 ≫ T2 and T ≫ T2, signal
generation is restricted to cases where ωa = ωb. In this limit, the
ratio S ̂2D− /S2̂D

ideal approaches the incoherent propagation function:

ω ω

ω ω

ω ω

ω ω

̂

̂
=

Π
Π

=
Π

ω ω

τ

τ

τ

τ
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− −

−

S T

S T

L
L

L
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( , ; )
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( )
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t
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t

2D

2D
ideal

2D

exit
ideal

2D

a b

(36)

In the incoherent limit, the ratio of complex valued 2DFT
spectra in eq 36 becomes equal to the ratio of absolute value
2DFT spectra if the phase introduced by nẑs can be neglected
over the entire frequency range in eq 34. Figure 2a shows the
2D version of the propagation function calculated using the
ratio of absolute value numerical 2DFT spectra indicated by the
left-hand side of eq 36, where S2̂D

ideal(ωt ,ωτ;T) is calculated as
S ̂2D0 (ωt ,ωτ;T) with ODmax = 0 (see eq 13). A plot of the ratio of
absolute value analytic propagation functions indicated by the
right-hand side of eq 36 is almost visually identical to Figure 2a.
Figure 2b depicts the difference (multiplied by a factor of 100)
between the numerical 2D propagation function (ratio of
absolute value 2DFT spectra indicated by the left-hand side of
eq 36) and the analytic 2D propagation function in the
incoherent limit, Π2D

− / (ratio of absolute value 2D propagation
functions indicated by the right-hand side of eq 36), where Π2D

−

is calculated using eq 34. Given that T1 = 1500T2, a converged
accuracy limit for this comparison is likely set by the use of T ≈
5T2 in Figure 2a.
For frequencies where the distorted 2DFT signal (|S2̂D

− |) is
above the 5% level, the difference shown in Figure 2b never
exceeds 0.0007. At the extremes of the diagonal, a ringing
artifact of the discrete Fourier-transform is visible with an
amplitude of up to ∼0.006. Ringing, which is more pronounced
along the diagonal than the antidiagonal in Figure 2b, only
appears in the numerical 2D propagation function (eq 36) and
grows for frequencies far from resonance, where the artifact is
non-negligible compared to the amplitude of the signal. The
difference has a local minimum along each dimension at |ω| =
ωeg. The approximate incoherent propagation function in eq 60
of ref 12 generates larger, numerically significant, disagreements
of 0.003 for signals above the 5% level; the improved agreement
here depends upon the better approximation of eq 31 for the
incoherent propagation function.
Equation 36 can be simplified for the case −ωτ = ωt = ωeg,

given that n ̂zs = n̂z under these conditions. This yields the
attenuation at peak center for S2̂D

− 2DFT spectra in the
incoherent limit

Figure 1. Absolute value 2DFT relaxation spectra for Bloch model in
the S ̂2D− representation (a) calculated using the analytic form of the
2DFT spectrum from eq 25 in eq 35 and (b) calculated numerically
using eq 16 in eqs 9−11. The scaled difference between spectra in
parts a and b, calculated according to |(a) − (b)| × 10, is presented in
part c. Peak optical density, ODmax = 1; grid time step, 850 fs; grid size,
10243; dephasing rate, Γ/2πc ≈ 0.265 cm−1 [T2 = 20 ps]; excited state
lifetime, T1 = 30 ns; center frequency, ωeg/2πc = 12816.7 cm−1;
waiting time, T = 100.3 ps; sample thickness, L = 500 μm; and
crossing angles, α = β = 4.84°. There are 19 contours, evenly spaced
every 5% from 5% to 95%, in parts a and b but only 8 contours, spaced
every 0.5%, in part c. The dotted line indicates the diagonal: ωt = −ωτ.
For ease of comparison, the limits for both frequency axes correspond
exactly to those of Figure 3 in ref 57.
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ω ω γ
ω ω γ

|Π |

|Π |
=
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where A(ωeg) = ODmax is the decadic absorbance (optical
density) of the sample at normal incidence and γ = (n2 − sin2α
− sin2β)1/2/n with n = 1 accounts for the additional path length
at oblique incidence (see eq 24). In the incoherent limit with
−ωτ = ωt (which implies ωa = ωb = ωc), using nẑ in place of nẑs
is exact, as is the case in eq 37. The single-point attenuation in
eq 37 can be readily calculated by hand to check a more
complicated 3DFT code. For an optical density of 1, the ratio
|Ŝ2D
− |/|S2̂D

ideal| = |Π2D
− |/|Πexit

ideal| at the peak center in Figure 2b
(0.03828 ± 0.00003) is only 0.11% higher than the attenuation
predicted by eq 37 using the same parameters (0.03824), a
discrepancy attributable to ringing. Inverting the numerical
ratio of |Π2D

− |/|Πexit
ideal|= 0.03828 using eq 37 with nẑ(ωeg) =

0.9929 + 0.0003i and γ = 0.9929 yields ODmax = 0.9997 ±
0.0003 (which agrees within error with ODmax = 1). The
attenuation factors appearing in eqs 36 and 37 have been
experimentally tested to 10% accuracy in frequency-integrated
pump−probe experiments for peak optical densities of up to 1
(see the absorption coefficient−dependent terms in eqs 24 and
26 of ref 15).
Calculations by the 3DFT method quantitatively reproduce

the Bloch line shape of an undistorted 2DFT spectrum.13 The

comparison in Figure 1 shows that the 3DFT method
reproduces propagation distorted 2DFT spectra in the
incoherent limit (waiting time T much greater than the
dephasing time T2), with the largest numerical errors in the far
wings due to the finite grid. The comparison in Figure 2
between the incoherent 2D propagation function calculated by
the 3DFT program (where grid errors largely cancel due to the
ratio in eq 36) and that calculated using the analytic expression
in eq 34 demonstrates quantitative agreement, matching in
signal attenuation over the entire range of relevant frequencies
at a peak optical density of 1. This agreement with
experimentally tested expressions confirms that the 3DFT
program properly accounts for the magnitude of propagation
distortions given the sample’s optical density. This rules out
many possible errors in the program’s code as causes of
disagreement between experiment and simulation. This
comparison does not ensure the accuracy of coherent
propagation effects at waiting times that are not long compared
to the total dephasing time (i.e., T is not much greater than T2).

■ RESULTS
Line broadening coefficients reported from frequency domain
experiments58,87−91 at Ar buffer gas pressures from 0 to 100
atm indicate that at the buffer gas and Rb vapor pressures
deduced from the experimental temperatures,57 line broadening
is dominated by nonresonant, binary Rb−buffer collisions. This,
along with the experimental observation of a Lorentzian
absorption line shape57 and Bloch model simulations of prior
time-resolved experiments31,60 on alkali metal vapors, moti-
vated use of an optical Bloch model that describes the line
shape of the Rb D2 transition with a single, homogeneous
broadening time scale, T2. This time scale enters the Bloch
model as the dipole decay rate (or total dephasing rate) Γ = 1/
T2 in the exponential decay of dipole oscillations μ(t) = μ0 sin
(ωegt)exp(−Γt). On the other hand, in studies of potassium
vapor at atomic densities 3 to 5 orders of magnitude higher
than the present work, a stochastic model is used to treat
frequency memory in resonance broadened line shapes.92−94 A
total dephasing time T2 = 20 ps, corresponding to a dipole
decay rate of Γ = 50 rad/ns and a Lorentzian absorption line
shape91 with fwhm = Γ/(πc) = 0.53 cm−1, was used for the
calculations presented here. All plots of 2DFT spectra
presented here have been peak normalized. This normalization
means that comparison of different spectra based on apparent
integrated intensity or peak height is not possible since these
properties are not indicated by the plots even though the
underlying calculations contain such information. When varying
the optical density of simulated 2DFT spectra, only the
strength of the linear response, the source of certain
propagation distortions, is modified. The nonlinear response
is held constant, meaning that changes in optical density do not
affect the strength of signal generation within the sample.
Experimentally, this would require a sample in which the
nonlinear response comes from a different chromophore than
the linear response so that they could be varied independently.
The time-referenced 2DFT rephasing spectra in Figure 3

illustrate the effects of increasing OD and can be compared to
the experimental spectra in Figure 3 of ref 57, but have one
difference: T = 500 fs in the calculation vs T = 200 fs in the
experiment. To ease comparison, the limits for both frequency
axes in Figure 3 (and in most 2DFT spectra presented here)
exactly match those of Figure 3 in ref 57, as can be readily seen
from the absolute cyclic frequencies marked at the top of Figure

Figure 2. 2D propagation function, |Π2D
− (ωt , ωτ, L)/ |, for the S ̂2D−

representation. Panel a is calculated with the Bloch model from the
ratio of absolute value numerical 2DFT spectra given by eq 36. The
absolute value of the difference between the numerical propagation
function in (a) and the absolute value of the analytic form given by eq
34 is multiplied by 100 in panel b. Peak optical density, ODmax = 1;
grid time step, 850 fs; grid size, 10243; dephasing rate, Γ/2πc ≈ 0.265
cm−1 [dephasing time T2 (=1/Γ) = 20 ps]; excited state lifetime, T1 =
30 ns; center frequency, ωeg/2πc = 12816.7 cm−1; waiting time, T =
100.3 ps; sample thickness, L = 500 μm; and crossing angles, α = β =
4.84°. There are 100 color levels, meaning that each color represents a
1% range. There are nine contours in panel a, evenly spaced every 10%
from 10% to 90%. The dotted line indicates the diagonal: ωt = −ωτ.
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3. The undistorted 2DFT spectrum in Figure 3a exhibits a star-
shaped 2D Lorentzian line shape which is symmetric in width
between the ωτ and ωt dimensions, both of which directly
reflect the underlying dipole decay rate (see eq 28). This
symmetry is a property of absolute value rephasing 2DFT
spectra and is not observed in absolute value 2DFT relaxation
spectra, which include both positive and negative τ values and
are naturally narrower in ωτ. While increasing the optical
density in the subsequent spectra of Figure 3 causes the line

shape to broaden in both dimensions, the width in ωt increases
at a greater rate than that in ωτ. The resulting line shape
asymmetry, barely visible at a peak optical density of 0.14, is
pronounced by the time the optical density reaches 0.59.
Although the ODmax = 0.14 spectrum is arguably in agreement
with the undistorted spectrum, by ODmax = 0.59 this is clearly
not the case as the line shape in Figure 3c has been broadened
considerably and also shows signs of peak splitting due to an
absorptive distortion at ωt ≈ ωeg. The ODmax = 1.14 spectrum is
broader still and its peak is split in the ωt dimension down to
the 70% contour. Looking closely at the line center in the inset
of Figure 3d, there is a subtle clockwise twisting of the line
shape, whereby the two halves of the split peak have rotated
toward the diagonal and are no longer displaced from each
other just along ωt, but also slightly along ωτ. This may arise
from an effect known as “phase-twist”4,14 which, for an
undistorted homogeneous optical Bloch line shape, occurs
only at T = 0 and is the result of mixing between the absorptive
and dispersive components of the line shape.82

Lifetime and Waiting Time Dependence of Propaga-
tion Distortions. The 2D line shape of an optically thin
sample with Bloch model dynamics has no waiting time (T)
dependence outside of pulse overlap due to the lack of
frequency memory. However, samples with finite optical
density distort their excitation pulses, spreading them out in
time in a frequency-dependent way, such that time intervals
between field−matter interactions within the sample (and even
their time-ordering) are not necessarily the same as for the
excitation pulses at the sample entrance, introducing distortions
of the 2D line shape that are dependent on both the waiting
time (T) and the excited state lifetime (T1). These coherent
transient effects are most pronounced when T and T1 are on
the order of T2 such that a non-negligible component of the
linear free-induction decay from pulses a and b persists through
the waiting period until the arrival of pulse c. These additional
coherent transient propagation distortions can be shown to
vanish so that only incoherent propagation distortions remain
at long T (i.e., T ≫ T2) in the limit that 2T1 ≫ T2, at which
point lifetime dephasing is no longer competitive with pure
dephasing.
An unintuitive consequence of this phenomenon is that the

signal at off-resonant frequencies can be absolutely larger for a
sample with a larger linear attenuation compared to a sample
with a smaller linear attenuation but the same nonlinear
response. As long as the excited state lifetime and the waiting
time are of similar magnitudes, the wings of a distorted 2DFT
spectrum can be enhanced compared to an undistorted 2DFT
spectrum.
Figure 4 illustrates the waiting time (T) dependence of the

absolute value rephasing 2DFT spectra for an optically thick
sample at a fixed value of T1. Three distinct effects can be
noted. First, the diagonal twisting of the split peak decreases
with increasing T. This is expected since phase-twist occurs
during pulse overlap (i.e., from T = 0 until T ≫ T2). Second,
the line shape subtly narrows along the ωt dimension with
increasing T, a signature which is most apparent in the lower
contours. Third, and perhaps most interesting, the depth of the
absorptive distortion at ωt ≈ ωeg decreases as T increases.
Going from T = 0.85 ps to T = 85 ps, the valley at ωt ≈ ωeg
becomes shallower by about one 5% contour. This suggests that
the severity of absorptive distortions at line center might be
reduced by measuring 2DFT spectra at longer T where the
trailing FID from pulses a and b is no longer present.

Figure 3. Absolute value rephasing 2DFT spectra (RS2̂D
t representa-

tion) for Bloch model with peak optical densities of (a) 0, (b) 0.14, (c)
0.59, and (d) 1.14. Grid time step, 500 fs; grid size, 10243; dephasing
rate, Γ/2πc ≈ 0.265 cm−1 [T2 = 20 ps]; excited state lifetime, T1 = 30
ns; center frequency, ωeg/2πc = 12816.7 cm−1; waiting time, T = 500
fs; sample thickness, L = 500 μm; and crossing angles, α = β = 4.84°.
There are 19 contours, evenly spaced every 5% from 5% to 95%. The
dotted line indicates the diagonal: ωt = −ωτ. The inset in part d is an
expanded view of the peak center. The cyclic frequency axis markers
and labels at the top show that the limits for both frequency axes are
the same as those of Figure 3 in ref 57.
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The excited state lifetime (T1) dependence of 2DFT spectra
at T ≪ T2 is presented in Figure 5. The same three effects
observed in Figure 4 are also seen here. However, the scaling of
these features with T1 is the inverse of the scaling with T; as T1
increases, the ωt width increases slightly, peak twisting
increases, and the absorptive distortion at ωt ≈ ωeg deepens.
Enhancement of the peak splitting is more pronounced for
variation of T1 in Figure 5, where the splitting deepens by 3
contour levels, than for variation of T in Figure 4, where the
splitting loses 1 contour level of depth.
Varying Beam Overlap Through Sample. The decision

to include the effects of varying beam overlap was influenced by
two observations in comparing the calculations to the
experimental spectra57 at OD > 0.5. First, the aspect ratio of
the 2D line shape in the experimental spectra, represented by
the ratio of widths Δωt/Δωτ, was larger than what could be
produced in the calculation by varying OD and Γ. Second, the
larger depth of the absorptive distortion along the line ωt ≈ ωeg
compared to that along the line ωτ ≈ −ωeg in the experimental
spectra was indicative of disproportionate attenuation in the ωt

dimension compared to the ωτ dimension. Although Figure 2
shows that the propagation function already has such an
asymmetry, the experimental spectra57 have an even larger
difference between the two dimensions.
Varying beam overlap will occur to some extent in any 2DFT

experiment involving noncollinear excitation beams with a finite
focal spot size and sample path length. If the focal points of the
excitation beams spatially coincide, then the beams will
completely overlap only in the plane parallel to the windows
that contains the focal point. Assuming that the beams cross at
the center of the sample cell and that the sample cell length is
much shorter than the Rayleigh range,27 the beam overlap for
Gaussian beams with waist w0 crossing at angle 2α is reduced
by a factor of exp[−(tan(α)L/2)2/w0

2] at the windows. This
effect is illustrated in Figure 6, where only two beams are
shown for simplicity. Since the focal spot in Figure 6 is nearer
to the entrance of the sample cell, the beams are well
overlapped in the front portion of the cell, between the
entrance window and the blue dashed line, but are poorly

Figure 4. Absolute value rephasing 2DFT spectra (RS2̂D
t representa-

tion) for Bloch model with waiting times: (a) T = 0.85 ps, (b) T = 8.5
ps, and (c) T = 85 ps. Peak optical density, ODmax = 1; grid time step,
850 fs; grid size, 10243; dephasing rate, Γ/2πc ≈ 0.265 cm−1

[dephasing time T2(= 1/Γ) = 20 ps]; excited state lifetime, T1 =
240 ps; center frequency, ωeg/2πc = 12816.7 cm−1; sample thickness, L
= 500 μm; and crossing angles, α = β = 4.84°. There are 19 contours,
evenly spaced every 5% from 5% to 95%. The dotted line indicates the
diagonal: ωt = −ωτ. Dotted grid lines mark 0.5 cm−1 increments.

Figure 5. Absolute value rephasing 2DFT spectra (RS2̂D
t representa-

tion) for Bloch model with excited state lifetimes: (a) T1 = 30 ps, (b)
T1 = 60 ps, and (c) T1 = 240 ps, all at waiting time T = 0.85 ps. Peak
optical density, ODmax = 1; grid time step, 850 fs; grid size, 10243;
dephasing rate, Γ/2πc ≈ 0.265 cm−1 [dephasing time T2(= 1/Γ) = 20
ps]; center frequency, ωeg/2πc = 12816.7 cm−1; sample thickness, L =
500 μm; and crossing angles, α = β = 4.84°. There are 19 contours,
evenly spaced every 5% from 5% to 95%. The dotted line indicates the
diagonal: ωt = −ωτ. Dotted grid lines mark 0.5 cm−1 increments.
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overlapped toward the back of the cell, between the blue
dashed line and the exit window.
If the position of the sample cell with respect to the common

focal point of the excitation beams is adjusted to maximize the
intensity of the radiated signal, the focal point will lie nearer to
the entrance window for an optically thick sample due to a
trade-off between attenuation of all three excitation beams
before signal generation versus attenuation of the one signal
beam after signal generation. Therefore, we approximate the
effect of varying beam overlap as perfect beam overlap in some
front portion of the sample cell and no beam overlap in the
remainder as would be expected experimentally when sample
cell placement is optimized by maximizing integrated signal
intensity. In the crude approximation used here to examine the
qualitative effects of varying beam overlap, the fraction of the
sample length over which nonlinear signal is generated, given
by

=
+

f
L

L Lnl
nl

nl lsp (38)

can be varied, but the total sample length L = Lnl + Llsp is fixed
to the thickness of the sample cell.
Since pulse c is linearly propagated before scattering off the

grating produced by pulses a and b, the generated signal at each
depth is imprinted with this distortion of pulse c before linearly
propagating through the remainder of the sample cell.12 The
result is that signal generated at any point in the sample appears
as if it were generated at the sample entrance and linearly
propagated over the total sample length (as implied by the final
exponential of eq 5) such that shape distortions of the 2DFT
spectrum along the ωt dimension are insensitive to changes in
the length and location of the signal generation region.
However, the linear propagation of pulses a and b prior to
signal generation and, consequently, the propagation dis-
tortions along the ωτ dimension are sensitive to such changes,
increasing in magnitude as the signal generation region shrinks
and moves toward the sample exit.
Implementation in Calculation. When implementing this

approximate treatment of varying beam overlap, the prop-

agation function Π for Region A should use Lnl in place of L
and be multiplied by an additional factor of

ω̂ · Lk eexp{i[ ( ) ] }d t z lsp
0

(39)

to incorporate linear propagation of the signal field in region B.
In eq 39, k̂d

0(ω) is the central wave vector of the detection beam
in the sample and Llsp is the length of the region in which the
signal field is linearly propagated following the nonlinear signal
generation region. In addition to the expression in eq 39, an
expression is needed that describes the linear propagation of
the detection field through region B. This expression is specific
to the representation of the spectrum to which it is applied and,
therefore, will be defined below for each representation. The
linear propagation term in eq 39 and a linear phase evolution
term for the detection field are applied to the FID-referenced
representation to yield the varying-beam-overlap FID-refer-
enced rephasing 2DFT spectrum:

ω ω ω ω

ω

ω

ω ω

ω

̂ = ̂

× ̂ ·

× − ̂ ·

= ̂

× − ̂ ·

τ τ

τ

RS T RS T

L

L

RS T

L

k e

k e

k e

( , ; ) ( , ; )

exp{i[ ( ) ] }

exp{ iRe[ ( ) ] }

( , ; )

exp{ Im[ ( ) ] }

t t

d t z lsp

d t z lsp

t

d t z lsp

2D
0,VBO

2D
0

0

0

2D
0

0
(40)

For small angles of incidence and κ2 ≪ n2, eq 40 can be
approximated as

ω ω ω ω

ω κ ω

̂ ≈ ̂

× −
τ τRS T RS T

c

( , ; ) ( , ; )

exp[ ( ) / ]

t t

t t lsp

2D
0,VBO

2D
0

(41)

where lsp = Llsp/(u·ez) is the additional path length for linear
propagation of the detection pulse with unit propagation vector
u through the linear signal propagation length, Llsp. The
superscript “VBO” stands for varying beam overlap and
indicates that the 2DFT spectrum includes the effects of
varying beam overlap distortions. Since the signal and detection
fields accrue the same amount of phase when propagating
through the linear signal propagation length (Llsp), the phase
propagation term on line 3 of eq 40 cancels the oppositely
signed phase propagation contained within the complex
exponential term on line 2 of eq 40. This leaves only the
attenuation of the signal field over the linear signal propagation
length, which is represented by the real-valued exponential
terms on the last line of eq 40 (and eq 41).
This distortion can also be applied to the time-referenced

representation to yield

ω ω ω ω

ω ω

ω κ ω

̂ ≈ ̂

× −

× −

τ τRS T RS T

n n c

c

( , ; ) ( , ; )

exp{i [ ( ) ] / }

exp[ ( ) / ]

t
t

t
t

t t v lsp

t t lsp

2D
,VBO

2D

(42)

which is valid for small angles of incidence and κ2 ≪ n2 where n
is the real part of the refractive index of the sample and nv = 1 is
the real-valued refractive index of vacuum. Equation 42 shows
that physically, varying beam overlap introduces two
components arising from propagation through region B: a
dispersive component due to the difference in phase accrued by

Figure 6. Depiction of beam overlap varying through the sample.
Black vertical lines represent the entrance (left) and exit (right)
windows. Laser beams are denoted by red parallelograms and only two
beams are shown for simplicity. The experimental beam overlap varies
continuously between perfect overlap and no overlap as a function of
propagation depth into the sample. To gain insight into the qualitative
effects to be expected from varying beam overlap, the sample is crudely
divided into a region of perfect overlap (A) followed by a region of no
overlap (B). In Region A (between the entrance window and the blue
dashed line), where excitation beams are well overlapped, the
nonlinear signal is generated and propagated over the length Lnl. In
region B (between the blue dashed line and the exit window), the
nonlinear signal generated in Region A is propagated according to the
linear optical properties of the sample over the length Llsp without any
further nonlinear signal generation.
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the signal field propagating through Llsp of sample compared to
vacuum (line 2) and an absorptive component due to
attenuation of the signal field from propagating through Llsp
of sample (line 3).
Resulting Calculated Spectra. The spectra in Figure 7

demonstrate the effect of varying beam overlap where the signal

is generated and propagated from the entrance window to a
distance Lnl into the sample, after which the signal is linearly
propagated through the remainder of the sample length (Llsp),
as shown in Figure 6. For constant total sample length L = Lnl +
Llsp, the main result of varying beam overlap is to narrow the
peak shape in the ωτ dimension by eliminating some of the
linear propagation distortion of pulses a and b. This helps to
increase the horizontal-to-vertical aspect ratio of the peak shape

in the calculation, bringing it closer to that of the experiment.
Twisting of the split peak in Figure 7a is greatly diminished as
f nl decreases and is no longer visible by f nl = 0.2 (Figure 7c).
Varying beam overlap also deepens the absorptive distortion
along the line ωt = ωeg except when T ≫ T2. Since the signal
field is always propagated over the entire sample path length
even when signal generation is confined to some front portion
of the sample cell, except for coherent effects which may be
present when T is not very much greater than T2, changing f nl
does not alter the shape of the spectrum in the ωt dimension as
long as the total sample length is held constant.

Excitation−Detection Transformation of Rephasing
2DFT Spectra. When applied to a distorted 2DFT relaxation
spectrum (including both positive and negative τ), the
excitation−detection transformation13 to S ̂2D++ (eq 23) is capable
of recovering the ideal (i.e., undistorted) 2DFT relaxation
spectrum even for sample optical densities as high as 1.
However, as illustrated in Figure 8, applying this transformation
to a 2DFT rephasing spectrum does not recover the ideal
rephasing spectrum. Given the power and simplicity of the
excitation−detection transformation, it is a major disadvantage
of 2DFT rephasing spectra that this transformation cannot be
directly utilized to obtain the ideal 2DFT rephasing spectrum.
The reason for this failure is that while the full τ range 2D time
domain signal has some components which are real-valued,
even functions of τ, taking only the rephasing (positive τ) part
of the spectrum makes half of the real-valued, even components
appear to be real-valued, odd functions of τ. When the signal is
subsequently Fourier transformed with respect to τ, these
artificial real-valued, odd components transform into imaginary-
valued, odd components.81 As is apparent in Figure 8, parts b
and c, the ideal rephasing spectrum contains signal at values of
ωτ for which there is no signal in the complete 2DFT relaxation
spectrum, as illustrated by the lack of signal at the extremes of
ωτ in Figure 8c. When the 2DFT spectrum is truncated at τ = 0,
signal amplitude is transferred from near the line center, which
is dominated by real components, to the far wings, which are
dominated by imaginary components. Thus, the “excitation
f requency” in the 2DFT rephasing spectrum does not ref lect the
physical excitation f requency.
This rearranged signal is not amplified appropriately by the

excitation−detection transformation since it appears at the
wrong excitation frequency. The result is that the RS ̂2D++
spectrum (Figure 8a) neither matches the ideal rephasing
spectrum (Figure 8b) nor the ideal relaxation spectrum (Figure
8c). While all three spectra in Figure 8 have similar line widths
in the ωt dimension, when comparing the line widths in the ωτ

dimension, the RŜ2D
++ spectrum is narrower than the ideal

rephasing spectrum and yet wider than the ideal relaxation
spectrum. The overall narrowest line shape is found in the ideal
S ̂2Dt spectrum in Figure 8c, whichunlike the ideal rephasing
spectrumis easily recovered using the excitation−detection
transformation on S2̂D

0 with peak optical densities in excess of 1
as long as T ≫ T2. At T = 100.3 ps, the Ŝ2D

++ spectrum with
ODmax = 1.14 and the same parameters as in Figure 8 (not
shown) has contours which are visually indistinguishable from
the ideal S ̂2Dt spectrum, the two differing by no more than
0.08% (relative to the peak of the spectrum) at any point.
At shorter waiting times, the propagation function is no

longer well described by a 2-dimensional function. Despite this
complication, the excitation−detection transformation still
performs well when applied to 2DFT relaxation spectra at
short T.13 For example, at T = 850 fs, the S2̂D

++ spectrum with

Figure 7. Absolute value rephasing 2DFT spectra (RS ̂2Dt ,VBO
representation) for Bloch model where signal is generated and
propagated through the first (a) 100%, (b) 60%, and (c) 20% of the
sample cell and linearly propagated through the remainder. Peak
optical density, ODmax = 1.14; grid time step, 850 fs; grid size, 10243;
dephasing rate, Γ/2πc ≈ 0.265 cm−1 [T2 = 20 ps]; excited state
lifetime, T1 = 240 ps; center frequency, ωeg/2πc = 12816.7 cm−1;
waiting time, T = 850 fs; total sample length, L = Lnl + Llsp = 500 μm;
and crossing angles, α = β = 4.84°. There are 19 contours, evenly
spaced every 5% from 5% to 95%. The dotted line indicates the
diagonal: ωt = −ωτ. Both frequency axis limits match those of Figure 3
in ref 57.
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ODmax = 1.14 (not shown) and the ideal S2̂D
t spectrum (which

is identical to Figure 8c) differ by no more than 13% (relative
to the peak of the spectrum), the majority of the disagreement
occurring near the line center where T-dependent peak twist is
most pronounced. In contrast, the same comparison done using
2DFT rephasing spectra results in a difference of up to 20%
between a RS2̂D

++ spectrum with ODmax = 1.14 (not shown) and
an “ideal” RS2̂D

t spectrum with ODmax = 0 (which is identical to
Figure 8b). We note that S ̂2D++ relaxation spectra may be Fourier
transformed to the time domain and truncated to provide an
indirect route to more nearly ideal 2DFT rephasing spectra.
Pseudo−Time Domain Filtering. When viewed in the

pseudo−time domain (Fourier conjugate domains to ωt and
ωτ), representations other than RS2̂D

t and Ŝ2D
t have signal that

appears to arrive at the sample exit before pulse c. The source of
this apparent “non-causal” signal is that the detection waves
used in these other representations are not true time references
due to their propagating through the sample and taking on

dispersion that is unaccounted for. While the phase accrued by
the detection wave from traversing the sample serves to cancel
that accrued by the signal, the variable conjugate to ωt has been
“shuffled” so that it is no longer a true time that can be used to
discern the time-ordering of events. While the time ordering of
and time delay between pulses are experimentally controllable,
the timing of electric field−chromophore interactions are not.
Therefore, in the case of an optically thick sample that reshapes
the excitation, detection, and signal fields, a given experimental
pulse sequence with known pulse timings will have signal
contributions from a range of electric field−chromophore
interaction intervals and orderings. The larger the temporal
smearing of excitation and detection pulses, the larger the range
of electric field−chromophore interaction intervals and order-
ings contributing to the signal. The term “pseudo−time
domain” is invoked since this filter is applied along a time
dimension that is referenced to an experimental pulse phase
whichexcept for the case of collinear beams, delta-function
pulses, and a thin sampledoes not specify a unique
interaction time and ordering. Therefore, these axes do not
necessarily represent true elapsed time and are more properly
viewed as the Fourier conjugates of ωt and ωτ.
An interesting consequence of the loss of apparent causality

in RS ̂2D0 is that it may also provide a means to reduce absorptive
distortions of the signal field, which are not accounted for in
RS2̂D

0 . It was first observed experimentally by Li et al.57 that
applying a pseudo−time domain filter that truncates the signal
before pulse c reduces the appearance of absorptive distortions
in the ωt dimension. The result of applying such a filter to a
calculated RS ̂2D0 spectrum is illustrated in Figure 9. To produce
Figure 9c, an RS2̂D

0 spectrum (Figure 9b) has been Fourier
transformed into the pseudo−time domain, multiplied by θ(t),
and then Fourier transformed back into the frequency domain.
This procedure is consistent with the processing of
experimental data illustrated in Figure 4c of ref 57. The filter
narrows the spectrum in the ωt dimension and greatly reduces
the absorptive distortion at ωt ≈ ωeg without significantly
altering other aspects of the line shape. While the validity of
such a filtering procedure is not without question, its reduction
of absorptive distortions thought to arise from propagation of
the signal is immediately apparent. However, a better approach
would be to measure the full 2DFT relaxation spectrum and
perform the excitation−detection transformation since this
procedure most accurately recovers the undistorted spectrum,
whose line width and line shape are physically reflective of the
microscopic dipole dynamics.

■ DISCUSSION
Although differences remain, the simulations qualitatively
reproduce many different propagation distortions of the
experimental 2DFT spectra,57 including varying beam overlap
distortions and peak shape broadening, splitting, and twist. As
mentioned in the Introduction, prior studies of Rb photo-
physics suggest that the experimental 2DFT spectra will contain
contributions with large waiting times (repetitive excitation)
and short lifetimes (alignment); both will quantitatively reduce
peak splitting and twisting. Additionally, the effects of pseudo−
time domain filtering, in both t and τ dimensions, have been
modeled and the trade-offs of using these filters have been
addressed. In this section, comparisons between simulated and
experimental 2DFT spectra will be further developed, high-
lighting both areas of agreement and disagreement as well as
suggesting experimental methods which minimize propagation

Figure 8. Absolute value 2DFT spectra for a Bloch model. (a) is RS2̂D
++

with ODmax = 1.14, (b) is RS ̂2Dt with ODmax = 0 (representing the ideal
rephasing spectrum), and (c) is S2̂D

t with ODmax = 0 (representing the
ideal relaxation spectrum). Note the difference in axis scales when
comparing to other figures. Grid time step, 850 fs; grid size, 10243;
dephasing rate, Γ/2πc ≈ 0.265 cm−1 [T2 = 20 ps]; excited state
lifetime, T1 = 30 ns; center frequency, ωeg/2πc = 12816.7 cm−1;
waiting time, T = 100.3 ps; sample thickness, L = 500 μm; and
crossing angles, α = β = 4.84°. There are 19 contours, evenly spaced
every 5% from 5% to 95%. The dotted line indicates the diagonal: ωt =
−ωτ.
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distortions and facilitate theoretical modeling. Finally, we
discuss strategies for decoupling propagation distortions and
the nonlinear optical response of samples at high optical
density.
Optical Density Effects. Although the range of line widths

observed when varying the optical density from 0.14 to 1.14 in
Figure 3 of ref 57 is larger than the range for simulations in
Figure 3, both show that increasing the optical density of a
sample increases its line width in addition to altering its line
shape. Both experimental and simulated 2DFT spectra exhibit
the onset of peak splitting at ODmax = 0.59, the result of strong
attenuation of the signal near the resonant frequency (ωeg).
Similar optical density−dependent peak shape broadening was
previously reported in simulations of absolute value rephasing

2DFT photon echo spectra at zero waiting time by Keusters
and Warren10 and in simulations of complex-valued 2DFT
relaxation spectra by Yetzbacher et al.13 At the highest optical
density, subtle twisting of the split peak in Figure 3d is mirrored
in the experimental 2DFT spectrum. The experimental and
simulated ODmax = 1.14 2DFT spectra also share a significant
absorptive distortion around ωt = ωeg, although the distortion is
more pronounced in the experiment, where it cuts all the way
down through the 5% contour level (vs the 70% contour of the
simulation). Discrepancies at high optical density will be
discussed further below.
Splitting and twisting of the experimental 2D peak shape at

high optical density were predicted by Yetzbacher et al.13 in a
simulation of real (absorptive) 2DFT relaxation spectra, and
the observation of these features in absolute value rephasing
2DFT spectra of Rb vapor by Li et al.57 largely motivated this
collaboration. The prior simulation (Figure 5 of ref 13)
demonstrates subtle peak splitting and twist in an S ̂2Dt 2DFT
spectrum for a homogeneous Bloch model in the lifetime-
dephasing limit at a peak optical density of 0.87. By
comparison, the simulations presented in Figure 3 are in the
pure-dephasing limit of the homogeneous Bloch model where
peak splitting and twist are more prominent for the same
optical density, an effect discussed further below. At optical
densities beyond those explored by Yetzbacher et al., twisting is
clearly visible near the center of the peak in Figures 3d, 5c, and
10, which have optical densities ranging from 1 to 3.
Twisting requires a correlation between ωt and ωτ. Although

the effect of phase-twist on the real part of 2DFT spectra is
similar in appearance to the peak shape twist observed here,
phase-twist is only observed during pulse overlap (i.e., when T
≈ 0) in ideal 2DFT spectra. However, with the inclusion of
propagation distortions, phase-twist could occur for larger
waiting times due to the temporal overlap of pulse c with the
trailing FID of pulse a or b. Since phase-twist does not affect
peak shapes in ideal absolute value rephasing 2DFT spectra, for
it to be responsible for the peak shape twist observed here
would require a complicated interaction between phase-twist
and propagation distortions, a conclusion consistent with the
appearance of peak twist only at relatively high optical density.
Peak splitting is simpler to understand than peak twisting and

is the result of resonant absorption of pulses a and b (for
splitting in the ωτ dimension) and pulse c and the signal (for
splitting in the ωt dimension). Just as with peak shape
broadening,10,13 this distortion is more severe along the ωt
dimension than along ωτ, even in simulations where excitation
beams are perfectly overlapped through the entire sample
length. This similarity between peak shape broadening and
splitting highlights their common source: preferential attenu-
ation of the signal and excitation fields near −ωτ = ωt = ωeg.

Waiting Time and Excited State Lifetime Depend-
ence. If the radiated linear free-induction decay from pulses a
and b is non-negligible at the end of the waiting period (i.e., T
is not much greater than T2), propagation distortions will have
3-dimensional features that are not reducible to lower
dimensionality. Figures 4 and 5, although without analogues
in the experimental work, demonstrate this 3-dimensional
nature of propagation distortions by varying the waiting time
and excited state lifetime, respectively, at a fixed total dephasing
time.
In simulations of absolute value rephasing 2DFT correlation

spectra for the homogeneous Bloch model, Keusters and
Warren10 reported asymmetric peak shape broadening at a peak

Figure 9. Bloch model RS2̂D
0 2DFT spectrum Fourier transformed into

the pseudo−time domain and integrated over τ (a), with (dashed red)
and without (solid blue) pseudo−time domain filtering. The resulting
absolute value rephasing 2DFT spectra, (b) without and (c) with
pseudo−time domain filtering. Plots a and c here are comparable to
the experimental plots found in panels a and c of Figure 4 of ref 57,
respectively. Peak optical density, ODmax = 2.17; grid time step, 500 fs;
grid size, 10243; dephasing rate, Γ/2πc ≈ 0.265 cm−1 [T2 = 20 ps];
excited state lifetime, T1 = 30 ns; center frequency, ωeg/2πc = 12816.7
cm−1; waiting time, T = 500 fs; sample thickness, L = 500 μm; and
crossing angles, α = β = 4.84°. There are 19 contours, evenly spaced
every 5% from 5% to 95%. The dotted line indicates the diagonal: ωt =
−ωτ. Both frequency axes in parts b and c have scale limits that exactly
match those of Figure 4 in ref 57.
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optical density of 0.32, with more severe broadening in the ωt
dimension than in ωτ. In addition, they found that this
asymmetry was larger in the pure-dephasing limit (T2 = T2*)
than in the lifetime-dephasing limit (T2 = 2T1). At a higher
optical density (ODmax = 1) than studied by Keusters and
Warren,10 our simulations show thatin addition to peak
shape broadeningpeak shape twist and splitting are also

affected by the ratio T1:T2. Figure 5 explores intermediate
excited state lifetimes compared to the pure- and lifetime-
dephasing limits simulated by Keusters and Warren.10 The
trend we observe of larger peak shape broadening asymmetry at
a longer excited state lifetime is in agreement with what they
report.10 Not visible in their work at lower optical density is the
trend of peak shape twist and splitting with the ratio T1:T2,
both of which are enhanced at longer excited state lifetimes in
Figure 5. These spectra show that the ratio T1:T2 is important
for an optically dense sample since it controls the fraction of
signal generated from interactions with the incident fields of
pulses a and b versus their radiated FID. For two pulse photon
echoes at low optical density, Keusters and Warren10

qualitatively explained the broadening as arising from
destructive interference between the nonlinear signal generated
by interactions with the two main pulses and the signal
generated by interactions with the main part of one pulse and
the trailing FID of the other pulse. A key aspect of their
discussion is that, for a resonant excitation pulse, the trailing
FID is π out of phase and decays exponentially in time with the
time constant T2. As a result, nonlinear signal involving one
FID interaction can be generated after the main pulse has
passed and interfere destructively with the nonlinear signal
from interaction with the main part of the pulse, hastening
decay of the nonlinear signal field and broadening the
spectrum. Discussion for four-wave mixing at low optical
density should consider a trailing FID on any one of the four
waves (three excitation pulses plus signal). The effect of
interacting with the trailing FID of the first pulse (a) is to
broaden the 2DFT spectrum in the ωτ dimension and is likely
to be similar for two pulse and three pulse echoes, as is the
effect of interacting with the trailing FID of the last pulse (c) in
broadening the 2DFT spectrum in the ωt dimension. Keusters
and Warren10 suggested that increases in T1 allow greater
contributions from interactions with the FID trailing the last
pulse (c), distorting the 2DFT spectrum primarily along the ωt
dimension. Here, similar coherent transient propagation effects
are probed at higher optical densities, where interactions with
multiple trailing FIDs (each of which may reflect multiple
absorption−reradiation cycles) must be simultaneously consid-
ered.
Figure 4 demonstrates that varying the waiting time has

similar effects on the 2DFT spectrum as varying the excited
state lifetime. Shorter waiting times exhibit more severe peak
shape twist, broadening, and splitting. These simulated 2DFT
spectra illustrate the importance of the ratio T:T2. The effect of
decreasing the waiting time T in Figure 4 is qualitatively similar
to that of increasing the lifetime T1 in Figure 5, suggesting a
common origin. The qualitative explanation of the lifetime
effect given by Keusters and Warren10 is consistent with the
waiting time effect.
Given the complexity of propagation distortions in the

coherent regime, it is beneficial from the point of view of
interpretation and modeling to first characterize the 2DFT
spectrum at T ≫ T2 before investigating dynamics at shorter
waiting times where coherent effects are present. Since
simulating a 2DFT spectrum at a long waiting time is typically
a 2-dimensional problem, it is more straightforward in this limit
to separate microscopic dipole dynamics from propagation
distortions and to determine the optical density of the sample
from its 2DFT spectrum.

Comparison to Experiment. The absorption line shape
broadening of a gas-phase chromophore can often be factored

Figure 10. Absolute value rephasing 2DFT spectra with additional
signal propagation (RS ̂2Dt,VBO representation) for Bloch model with (a)
ODmax = 2, f nl = 1; (b) ODmax = 3, f nl = 1; (c) ODmax = 3, f nl = 0.8; and
(d) ODmax = 3, f nl = 0.6 where f nl = Lnl/(Lnl + Llsp) is the fraction of the
sample length over which nonlinear signal is generated. Grid time step,
500 fs; grid size, 10243; dephasing rate, Γ/2πc ≈ 0.265 cm−1 [T2 = 20
ps]; excited state lifetime, T1 = 240 ps; center frequency, ωeg/2πc =
12816.7 cm−1; waiting time, T = 500 fs; sample thickness, L = Lnl + Llsp
= 500 μm; and crossing angles, α = β = 4.84°. There are 19 contours,
evenly spaced every 5% from 5% to 95%. The dotted line indicates the
diagonal: ωt = −ωτ. The absolute cyclic frequency axis at the top of the
figure indicates that both frequency axes have scales exactly matching
those of Figure 3 in ref 57.
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into homogeneous Lorentzian componentssuch as non-
resonant collisional (or pressure) broadening, resonant self-
broadening, and lifetime broadeningand inhomogeneous
Gaussian components, such as Doppler broadening. Collisional
broadening is caused by chromophore−buffer gas collisions
while self-broadening comes about due to chromophore−
chromophore collisions. On the basis of the literature
values58,87,95,96 of these sources of broadening for Rb in Ar
buffer gas, collisional broadening dominates, accounting for
greater than 98% of the total line width under the conditions of
the experiment.57 This prediction is based on using the
experimental Rb reservoir temperature to determine the vapor
pressure97 and number density of Rb in the sample cell. To
estimate collisional broadening, it is assumed that 2 atm of Ar is
loaded into the cell at 298 K and that its pressure increases as
the cell is heated at constant volume, as in the experiment.57 It
should be noted that there is approximately ±20% variation
between sources in the reported Rb vapor pressure curve97−99

and collisional broadening coefficient.87,88,98,100−103 However, it
appears that such uncertainty is insufficient to account for the
differences between the results of calculations and experimental
measurements.
At the lowest Rb reservoir temperature (90 °C, ODmax =

0.14), the predicted Lorentzian fwhm line width (1.14 cm−1) is
more than three times larger than the line width estimated from
the experimental57 absorption spectrum (∼0.35 cm−1). The
disagreement persists at the highest Rb reservoir temperature
(160 °C, ODmax = 1.14) where theory predicts a line width of
1.25 cm−1 while the experimental57 absorption spectrum
indicates a line width of ∼0.51 cm−1. Owing to the
inconsistency between the experimental absorption spectra
and these simple theoretic predictions of the line shape, the
dephasing rate used in these simulations was set to Γ = 50 rad/
ns = (2πc) 0.265 cm−1, corresponding to a fwhm of 0.53 cm−1,
a compromise between the experimental and predicted line
width estimates.
In addition, with values for the line width,58,87,95,96 Rb

number density,97 and integrated absorption cross section,95

the absorption spectrum can be simulated for comparison to
experiment. In order to avoid sample cell uptake of Rb, the
sample cell104 is made of a titanium body with sapphire105

windows. Since this calculation relies on the experimentally
reported Rb reservoir temperature to determine the Rb number
density in the optical path of the excitation beams, it will fail in
the case of an inhomogeneous temperature or Rb vapor
distribution throughout the sample cell. While linear absorption
measurements are sensitive to the integrated number density of
chromophores but not to chromophore density gradients,
2DFT spectra are sensitive to both, and the simulations of
2DFT spectra presented here assume a uniform chromophore
distribution in calculating propagation distortions. While the
Beer−Lambert law predicts a linear proportionality between
optical density and concentration, the plot of experimental
optical density vs concentration calculated from the Rb
reservoir temperature is nonlinear and appears to saturate as
Rb number density increases. The experimental and calculated
ODmax coincidentally agree to within 2% at the highest Rb
reservoir temperature. Predicted optical densities are a factor of
1.4 to 6.2 lower than experimental ones at all except the highest
experimental temperature.
Furthermore, the extent of propagation distortions in the

experimental 2DFT spectra implies optical densities higher
than measured in the experimental absorption spectra. This

difference is evidenced by simulated 2DFT spectra, calculated
with optical densities taken from experimental linear absorption
spectra, having considerably milder propagation distortions
than experimental 2DFT spectra at the same Rb reservoir
temperatures. As with the disagreement in line width, these
inconsistencies cast doubt on the reliability of the experimental
absorption measurements as a source of ODmax and Γ for 2DFT
spectra and also suggest that the Rb reservoir temperature may
not be directly indicative of the Rb vapor density in the path of
the excitation beams. These discrepancies may result from
differences in beam power or buffer gas pressure between
measurements of the linear absorption spectrum and the 2DFT
spectrum, which were taken on different days.
Before comparing calculated and measured 2DFT spectra, it

is important to mention two standard checks on the
experiment. First, the excitation pulse energy dependence of
the nonlinear signal pulse energy was measured at 5, 7.5, and 10
mW excitation beam power; the best fit exponent was 3.1 ±
0.4, agreeing with a cubic power dependence within error.
Second, the maximum single pulse excitation probability was
estimated from the pulse area61 using the transition dipole for
linearly polarized D2 excitation (2.07 × 10−29 C·m). Using the
measured pulse duration, pulse energy, and beam diameter, the
calculated excitation probability reaches 10% at the center of
the beam just inside the sample entrance window. This
excitation probability would be consistent with the measured
third-order power dependence of the signal if relaxation were
complete between pulse sequences, but the absence of known
quenching channels suggests some higher-order pumping
processes not detected in the experimental power dependence.
There could be an unexpected quenching channel or optical
pumping might effectively modify the steady-state re-
sponse,56,77 adding an uncertainty beyond that arising from
uncertainties in optical density. As a result, we decided to vary
the optical density used in the simulations to best reproduce
the propagation distortions present in the experimental 2DFT
spectra.
No asymmetry is present in undistorted (OD = 0) rephasing

2DFT spectra calculated using the homogeneous Bloch model,
which produces a symmetric star-shaped peak in absolute value.
At the lowest experimental optical density (ODmax = 0.14), only
minor propagation distortions are expected and simulations do
not reproduce the asymmetry in line width between the ωτ and
ωt dimensions observed in the experiment. While absorptive
distortions broaden line shapes more severely along ωt than
along ωτ, the 2:1 aspect ratio of the ODmax = 0.14 experimental
2DFT spectrum is only recovered in simulations at ODmax > 1,
by which point peak splitting becomes evident. Figures 4 and 5
indicate that peak splitting will remain when signals expected
from repetitive excitation [T = 13 ns, T = 26 ns, T = 39 ns, etc.
with exponentially diminishing amplitudes exp(−T/T1) and
population lifetime T1 = 27 ns] and alignment (with alignment
lifetime T1 = 20 ps and one-third the amplitude of the T = 200
fs 2DFT spectrum) are included. Both the mean time between
Rb−Ar collisions (≈ 10 ps) and the collision duration (τc ≈ 2
ps),107 estimated for the experimental conditions,57 are longer
than the experimental waiting time (T = 200 fs). This might
lead one to doubt the applicability of the homogeneous Bloch
model in favor of the Kubo stochastic model or inhomoge-
neous Bloch model for this experiment. However, these models
produce either a symmetric star-shaped peak, in the case of the
Bloch model in the homogeneous limit and the Kubo stochastic
model in the fast-modulation limit, or a diagonally elongated
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peak that is roughly elliptical, in the case of the Bloch model in
the inhomogeneous limit and the Kubo stochastic model in the
slow-modulation limit. Calculations by Keusters and Warren10

for a pure dephasing Bloch model indicate that higher intensity
pulses reduce propagation asymmetry at ODmax = 0.32 in the
absolute value rephasing 2DFT spectrum; this suggests that
high intensity pulses would not cause asymmetry at low optical
density. On the experimental side, scattered light with intensity
less than 2% of the peak shape maximum lies along ωτ =
−1.004 ωt and is coincident with the diagonal within the likely
uncertainty of this check while potential ghost peaks are below
5% of the peak amplitude of the 2DFT spectrum. The origin of
this asymmetry in the 2D peak shape is not understood,
perhaps indicating that the two-level homogeneous Bloch
model is not adequate to describe the nonlinear optical
response of this system.
Comparing “reference around” experimental 2DFT spectra

by Li et al.57 to simulated 2DFT RS2̂D
t spectra using the

experimentally reported values for ODmax = (0.14, 0.59, 1.14)
and f nl = 0.8, clear disagreement in the width of the 2DFT line
shape and the depth of the absorptive distortion near ωt = ωeg is
noted. While reducing the fraction of the sample in which the
signal field is generated (Figure 7) does increase the aspect
ratio of the 2D line shape and slightly deepens the absorptive
distortion near ωt = ωeg, it does nothing to increase the line
width in the ωτ dimension, which is needed to better match the
experimental spectra. Outside of the dephasing rate, which is
already set to a larger value than observed in the experimental
linear absorption spectrum, optical density is the only handle
for changing the ωτ width. To recover the ωτ width of the
experimental OD = 1.14 “reference around” spectrum (Figure 3
of ref 57), the ODmax used in the simulation was increased to
∼3, as illustrated in Figure 10. Since a ∼25 K increase in
temperature of the Rb vapor sample cell is sufficient to cause a
factor of 3 increase in the number density of Rb, a 3-fold
increase in optical density might be within the combined
uncertainty of the temperature and linear absorption measure-
ments. Optical pumping77 and local heating of the sample by
the excitation beams108 might also contribute to the disagree-
ment in line shape. Given the likely uncertainty in optical
density, model values of ODmax ≈ 3 and f nl ≈ 0.8 may best
represent the actual experimental conditions. Comparing the
ODmax = 1.14 experimental 2DFT spectrum in Figure 3 of ref
57 to the ODmax = 3 simulation in Figure 10c, the fwhm
through the left and right maxima along the excitation
dimension are 2.1 and 2.4 cm−1 (experiment) vs 2.4 and 2.4
cm−1 (simulation), the line-center fwhm along the detection
dimension are 3.9 cm−1 (experiment) vs 4.6 cm−1 (simulation),
the line-center splitting fwhm along the detection dimension
are 0.83 cm−1 (experiment) vs 0.65 cm−1 (simulation), the
splitting depths (as a fraction of the peak shape maximum) are
0.016 (experiment) vs 0.273 (simulation), and the split peaks
are twisted from the horizontal toward the diagonal by 10°
(experiment) vs 22° (simulation). While the effect of any
optical pumping has not been calculated, adding signal
contributions from repetitive excitation (with long waiting
times as in Figure 4c) and alignment (with a short lifetime as in
Figure 5a) would reduce split peak twisting in the simulation,
bringing it into closer agreement with experiment. This rough
agreement for the split peak twisting provides a crucial check of
propagation distortion theory in the coherent transient regime.

■ IMPLICATIONS FOR EXPERIMENT

Yetzbacher et al. previously outlined experimental conditions in
which propagation distortions are minimized and introduced
transformations that reduce distortions in 2DFT correlation
and relaxation spectra at optical densities of up to 1.13 Through
characterization of pseudo−time domain filtering, which
includes filtering both in τ (to produce rephasing 2DFT
spectra) and in t, it appears that these filtering techniques
provide no clear advantage over application of the excitation−
detection transformation to 2DFT relaxation spectra for
recovering the ideal line shape. The S2̂D

++ spectrum not only
matches the ideal 2DFT relaxation spectrum (Figure 8c) to a
high degree, but it also has a narrower 2D line shape than the
RS ̂2D++ spectrum (Figure 8a). However, any well-characterized
pseudo−time domain filter can be applied to simulations using
the 3DFT method, as exhibited in Figure 9. The effect of a
pseudo−time domain filter that removes signal that appears to
arrive before pulse c in the t dimension, presented in Figure 9,
matches some of the experimental signatures of this filter in
Figure 4 of ref 57. In particular, simulations capture both the
narrowing of the line shape in ωt and the reduction in the depth
of the absorptive distortion near ωt = ωeg.
Despite the crude nature of the approximation used, our

treatment of varying beam overlap was able to capture the
experimental signature of this distortion wherein the aspect
ratio of the 2D line shape is larger than that produced by the
propagation function alone. This analysis also illustrates two
important points. First, it reinforces the observation that the
signal is always effectively propagated over the entire length of
the sample cell regardless of where it is generated within the
sample cell.12 As evidence, it can be seen in Figure 7 that
reducing the length of the region over which signal generation
occurs does not alter the line shape in the ωt dimension as long
as the total sample length is held constant. Second, it shows the
disadvantage of using a sample cell with a path length longer
than the overlap length of the incident laser beams since any
region where beams are not well overlapped will not contribute
significantly to signal generation, but will attenuate and distort
the signal.
A pseudo−time domain filter around t = tc ≡ 0 was used in

the work by Li et al.57 to discriminate against scatter from
excitation pulses. Simulations of “reference around”-type RS ̂2Dt
2DFT spectra exhibit a strong dependence on the exact
placement of this filter. Moving the filter by 1 ps into positive t
causes the height of the spectrum at −ωτ = ωt = ωeg (relative to
the peak of the spectrum) to decrease by a factor of 3, greatly
enhancing the depth of the absorptive distortion. This
sensitivity indicates that even a small uncertainty in the
position of a pseudo−time domain filter around t = 0 can
significantly alter the 2DFT spectrum.
Using the method put forward by Hybl et al.,3 2DFT spectra

at long waiting times (T ≫ T2) can be simulated with no
adjustable parameters, relying only on independent 1D spectra
of the sample and excitation pulses. Such simulations are
valuable for comparison to experimental 2DFT spectra in the
long T limit. They can also be compared to 2DFT spectra
simulated by the 3DFT method in order to test line shape
models and to estimate the magnitude of propagation
distortions. Furthermore, experimental 2DFT spectra taken
under conditions where the optical density and line shape
model, as well as its parameters, can be predicted from prior
literature results provide the opportunity to simulate distorted
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2DFT spectra with no adjustable parameters even at short
waiting times where coherent effects are present in both the 2D
peak shape and the propagation distortions.
Distorted 2DFT spectra at short waiting times often disguise

their true peak shape and peak width under coherent effects
and absorptive line broadening, making them a poor source of
information on which to base simulations. If the Bloch model is
truly appropriate (and there are physical grounds to doubt this
at waiting times less than the time between collisions or the
collision duration), all of the parameters necessary for the
3DFT simulation are available from the experimental geometry
and independent spectroscopic measurements. So, for cases
where there is no reliable source of line shape information in
the literature, simulations of distorted 2DFT spectra at arbitrary
T with no adjustable parameters may still be possible.
Through the challenge of modeling extreme propagation

distortions, this study suggests a set of measurements to aid
quantitative theoretical modeling. Measurement of the free-
induction decay of each of the excitation pulses can check linear
propagation of the excitation fields, which is a requirement of
the theory underlying these calculations. Linearity of
absorption, however, does not guarantee linear propaga-
tion.3,12,28 Well-resolved linear absorption spectra are also
critical to this check. As with free-induction decay measure-
ments, absorption spectra indicate the optical density of the
sample and, for the homogeneous Bloch model, determine the
line shape function. The theory requires that excitation beam
overlap homogeneously fill the entire sample path length, which
can be accomplished by either using shallow beam crossing
angles or a sufficiently thin sample cell. For the homogeneous
Bloch model, 2DFT relaxation spectra measured at T≫ T2 and
low optical density can independently determine the line shape
parameters since coherent effects are minimized at long T,
leaving a “product peak shape” which is simpler to interpret.
For a detailed analysis of 2DFT spectra at long waiting times,
see the appendix of ref 3. 2DFT relaxation spectra at T ≫ T2
but with higher optical densities, once corrected for
propagation distortions using the excitation−detection trans-
formation (exact when T ≫ T2), would reveal the dependence
of homogeneous Bloch model parameters on chromophore
density. Although increasing the optical density by increasing
the temperature in this experiment would also increase the
relative Rb−Ar velocity and hence the dephasing rate, the
predicted ∼10% increase in line width from 363 to 433 K due
to Rb−Ar collisions is small compared to the line broadening
caused by propagation distortions over the same range.
Alternatively, long-T spectra could serve an an independent
measurement of the sample optical density if the line shape
model parameters are known from an independent source.
These measurements and experimental checks enable un-
ambiguous assignment of a line shape model, line shape
parameters, and optical density in the incoherent limit and
serve as a foundation for modeling the addition of coherent
effects at short waiting times.

■ CONCLUSIONS
Absolute value rephasing 2DFT spectra of the collision-
broadened D2 line of rubidium in argon buffer gas have been
simulated over a range of optical densities using a 3DFT
method11−14 and compared to experimental 2DFT spectra
reported by Li et al.57 The slightly temperature-dependent
Lorentzian line widths predicted from previously measured
Rb−Ar collision cross sections58,87 indicate that propagation

distortions are responsible for nearly all of the change in optical
Bloch model 2D peak shapes across the experimental range of
optical densities. When the waiting time is much greater than
the dephasing time, propagation distortions of the 2DFT
relaxation spectrum reduce to a 2D propagation function that is
separable into a product of 1D excitation frequency (ωτ) and
detection frequency (ωt) attenuation factors, divided by a 1D
refractive factor. When the waiting time T is less than the
dephasing time T2, the optical Bloch model’s propagation
distorted 2D spectrum is no longer separable into independent
ωτ, ωt, and T dimensions. In this coherent transient regime,
propagation distortions reveal the three-dimensional nature of
the third-order nonlinear susceptibility and response explored
here.
Although absolute value rephasing 2DFT spectra for the

optical Bloch model have a symmetric 2D Lorentzian star shape
in the low OD limit, increases in the optical density of 2DFT
spectra initially generate a 2D Lorentzian peak shape with a
greater line width along the detection frequency (ωt) than the
excitation frequency (ωτ).

10 This occurs for two reasons: more
signal is generated near the front of the sample, at depths where
pulses that dictate the excitation frequency are less attenuated;
in contrast, the attenuation of the last excitation pulse and of
the signal combine to generate an effective attenuation of the
detected signal throughout the entire sample length,
independent of the depth at which signal is actually
generated.12

The above differences between line shape distortions along
the excitation and detection frequency dimensions are
magnified when the excitation beams do not overlap
throughout the sample, as in the Rb 2DFT experiment.57 For
a fixed total sample length, maximum signal is generated by
maximizing beam overlap near the entrance window−sample
interface. Decreasing the length of the beam overlap region at
fixed total sample length decreases absorptive distortions along
the excitation frequency dimension while leaving signal
attenuation and distortion along the detection frequency largely
unchanged. Matching the sample and beam overlap lengths is
recommended to enhance signal and reduce distortion.
At peak optical densities greater than 0.5, peak splitting

around the resonant detection frequency is observed in both
experimental and simulated 2DFT spectra. Higher optical
densities produce further increases in line width, deeper peak
splitting, and introduce progressive peak shape twisting below
ODmax = 1. As the waiting time T increases, the detection
frequency line width slightly decreases, peak splitting
diminishes, and peak twist disappears. The opposite trends
are observed when increasing the excited state population
lifetime T1.
An excitation−detection transformation13 exactly recovers

the ideal 2DFT relaxation spectrum at waiting times T much
greater than the dephasing time T2 and still approximately
recovers the ideal spectrum at shorter waiting times. In
contrast, the ideal 2DFT rephasing spectrum is not recovered
by the same transformation of a rephasing 2DFT spectrum.
Although time domain filters reduce distortion of the rephasing
2DFT spectrum, we note that distortion of the rephasing 2DFT
spectrum can be reduced (for short T) or eliminated (for T ≫
T2) by extracting the rephasing 2DFT spectrum from the
excitation−detection transformed 2DFT relaxation spectrum,
which contains both rephasing and nonrephasing 2DFT
spectra. Long waiting time 2DFT relaxation spectra are
recommended for verifying sample conditions.
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Simulations of absolute value rephasing 2DFT spectra using
a peak optical density of 3, a collisional broadening line width
of 0.5 cm−1, and beam overlap in the first 80% of the sample
closely resemble the experimental “reference around” 2DFT
spectra reported for ODmax ≈ 1 in ∼1500 Torr Ar at ∼433 K.
The discrepancy in sample conditions may arise from the
combined effects of sample temperature uncertainties, collision
cross section uncertainties, repetitive excitation modifications of
the nonlinear response, and a rough approximation in
calculation of the effect of varying beam overlap. The
experimental line width, peak splitting depth, and peak twist
at T = 200 fs are closely reproduced by calculations at T = 500
fs waiting time under these adjusted conditions; such features
depend quantitatively on the relationship between the waiting
time, dephasing time, and lifetime, but peak twist is purely a
coherent transient effect. This calculation of the experimental
twist of the split peaks toward the diagonal qualitatively verifies
a new prediction of the 3DFT propagation theory that should
be robust to the inclusion of alignment and repetitive excitation
effects in a more complete model. With lower repetition rates
to eliminate optical pumping, more fully overlapped beams,
improved characterization of the sample absorption spectrum,
and modeling that includes alignment effects, it appears that
quantitative tests of the 3DFT theory against experimental
2DFT spectra with severe propagation distortions will be
possible in the coherent transient regime.
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