

Electronic-vibrational coupling probed by 4D Raman-electronic spectroscopy

Austin P. Spencer, William O. Hutson, and Elad Harel

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States

Multidimensional Electronic-Raman Spectroscopy*

Electronic-vibrational coupling is the driving force behind many fundamental photochemical process-Abstract es, ranging from phonon-assisted carrier cooling in semiconductors to photoisomerization in proteins and molecular chromophores. Correlations between electronic and vibrational transitions are sensitive reporters of the structural dynamics underlying these processes, yet they have proved challenging to study. Gradient assisted multidimensional electronic–Raman spectroscopy (GAMERS) is a powerful new technique for correlating such interactions across two electronic and two Raman (vibrational) dimensions, enabling functional group-level specificity. Its ability to resolve coherence pathway-specific signatures in a cyanine dye is demonstrated. Additionally, we show that GAMERS enables two structurally similar chromophores with nearly identical electronic spectra to be distinguished based on differences in their 2D electronic–2D Raman spectra. Finally, GAMERS is applied to colloidal CdSe quantum dots, exposing the coupling of excitons to both optical and acoustic phonons.

GAMERS Applications[†]

Nile Blue and Oxazine 170 are structurally

related cyanine dyes that have nearly iden-

tical linear absorption spectra in the visi-

ble region. However, differences in their 4D

GAMERS spectra enable the two molecules

to be distinguished based on their Raman

vibrational frequencies. While Nile Blue

has a single vibration at 595 cm⁻¹, Oxazine

has two modes: 591 cm⁻¹ and 565 cm⁻¹.

Distinguishing related chromophores

. . . . -10)+> $\omega_{\mathrm{T}} \, [\mathrm{cm}^{-1}]$

Electron-phonon coupling in CdSe quantum dots

Exciton-phonon interactions play a key role in the relaxation and energy transfer dynamics of colloidal quantum dots. Characterizing how phonons intermediate such processes as carrier cooling

GAMERS spectra of IR-140, a cyanine dye

Raman vibrations are observed along both the T and T_0 dimensions.

2D Beating Maps

Beating maps constructed from frequencies of peaks along the diagonal of the 2D Raman spectrum exhibit peak shifts related to the vibrational frequency.

electronic

and exciton-exciton interaction is critical for understanding their photophys-

T_o (nonresonant)

The Raman-like spectrum along

The Fourier transform of the 2D transient contains features primarily along the diagonal in the (+,+) and (-,-) quadrants.

Hutson, W. O., Spencer, A. P. & Harel, E. Isolated Ground-State Vibrational Coherence Measured by Fifth-Order Single-Shot Two-Dimensional Electronic Spectroscopy. J. Phys. Chem. Lett. 3636–3640 (2016).

LO

[†]Spencer, A. P., Hutson, W. O. & Harel, E., in preparation.

GAMERS is a powerful method for probing electronic-vibrational coupling in a wide range Conclusions of chemical systems. The added dimensionality of the technique uncovers structure that is hidden in lower-order methods under the broad lineshapes of congested electronic spectra. In addition, control over resonance within the experiment helps in parsing the electronic character of coherent oscillations during each time interval between pulses, enabling pathway-specific assignment of features within the 4D GAMERS spectrum.