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Broadband 2DFT and 3DFT spectroscopy

Zinc porphyrins

3DFT electronic spectra of porphyrinsElectronic–vibrational coupling in porphyrins
A commonality among many highly efficient light harvesting protein complexes is that they exhibit strong 
and persistent coherent spectral signatures that coincide with the early steps of the energy transport 

process.  Due in part to the inherent complexity and scale of protein systems, the source of these coherences remains 
unresolved, let alone their potential role in the light harvesting process.  To overcome these challenges, we apply two-
dimensional Fourier-transform spectroscopy to porphyrins and their dimers, which serve as model synthetic systems 
that are analogous to natural chlorophyll yet are more accessible to theoretical simulation.  Combined with broadband 
visible excitation, this technique allows us to monitor the entire Q band region to reveal the coherent dynamics involved 
in the early stages of energy and charge transfer.

Abstract

Capabilities

Partially common-path design yields passive 
phase stability.  Rapid delay scanning increases 
acquisition speed and signal to noise.

Porphyrin oligomers serve as an ideal framework for exploring the influence of electronic–vi-
brational coupling on energy and charge transfer using 2DFT electronic spectroscopy.  3DFT 

spectra of porphyrin monomers exhibit rich vibronic beating signatures that allude to a complex interplay between 
vibrational and electronic degrees of freedom.  Likewise, porphyrin dimers contain intense vibronic beating features 
whose dependence on electronic coupling will be a target of continued research.
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Near-degeneracy between 
vibrational and electronic 
transitions leads to strong 

non-adiabatic coupling.
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How does vibrational 
resonance influence coupling 
between electronic states?
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Data analysis

•	Extremely broadband: 
		  < 7 fs
•	Large spectral volume:	
		  (5000 cm-1)3 
•	Rapid acquisition:	
		  1 s/2DFT spectrum
		  10 min/3DFT spectrum
•	Passively phase stable on the timescale of hours.
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vibrational coherences

PZn(ETIPS)2
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vibrational coherences

Dynamics in 2DFT spectra S(𝜔𝜏, T, 𝜔𝑡) are fit to a sum of complex 
exponentials with a common set of complex parameters si but 
independent amplitudes at each (𝜔𝜏, 𝜔𝑡) point.

Global analysis
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Linear PZn2(ETIPS)2
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